1.
Given non-negative numbers a, b, c, x, y, and z with a+b+c+x+y+z=1, and abc+xyz=1/36, find the largest possible value for abz+bcx+cay.
Ans: 1/108
2.
If α, β, γ ∈ (0,π/2) and (sinα)^2 + (sinβ)^2 + (sinγ)^2 = 1 , find the maximum value for (sinα+sinβ+sinγ) / (cosα+cosβ+cosγ).
Ans:(√ 2)/2
3.
Given △ABC. Let a, b, and c be the opposite sides to interior angles A, B, and C, respectively. If 1/a = 1/b + 1/c, find the maximum possible value for sinA.
Ans: (√ 15)/ 8