✔ 最佳答案
∫ sqrt(4+9x^2) dx
Let x = (2/3) tan t
dx = (2/3) sec^2 t dt
4+9x^2 = 4+ 9(4/9) tan^2 t = 4+ 4 tan^2 t = 4(1+tan^2 t) = 4 sec^2 t
sqrt(4+x^2) = 2 sec t
∫ sqrt(4+9x^2) dx = ∫ (2 sec t) (2/3) sec^2 t dt
= (4/3) ∫ sec^3 t dt
Let us integrate ∫ sec^3 t dt
Let I = ∫ sec^3 t dt
Integrate by parts
∫ sec^3 t dt = ∫ sec^2 t sec t dt
dv = sec^2 t ; v = tan t ;
u = sec t ; du = sec t tan t dt
∫ u dv = u v - ∫ v du
I = sec t tan t - ∫ tan t sec t tan t dt
I = sec t tan t - ∫ tan^2 t sec t dt
I = sec t tan t - ∫ (sec^2 t -1) sec t dt
I = sec t tan t - ∫ sec^3 t + ∫ sec t dt
I = sec t tan t - I + ln ( sec t + tan t )
2I = sec t tan t + ln ( sec t + tan t )
I = (1/2) sec t tan t + (1/2) ln ( sec t + tan t )
∫ sec^3 t dt = (1/2) sec t tan t + (1/2) ln ( sec t + tan t )
(4/3) ∫ sec^3 t dt = (2/3) sec t tan t + (2/3) ln ( sec t + tan t )
transform t back to x
The substitution was x = (2/3) tan t
tan t = 3x/2
sec t = sqrt( 1+ tan^2 t) = sqrt( 1+ 9x^2 / 4) = sqrt(4+9x^2) /sqrt(4) = (1/2) sqrt(4+9x^2)
(2/3) sec t tan t + (2/3) ln ( sec t + tan t ) = (2/3)(1/2) sqrt(4+9x^2) (3x/2) + (2/3) ln ( sqrt(4+9x^2) /2 + 3x/2 )
= (1/2) x sqrt(4+9x^2) + (2/3) ln ( sqrt(4+9x^2) /2 + 3x /2 )
∫ sqrt(4+9x^2) dx = (1/2) x sqrt(4+9x^2) + (2/3) ln ( sqrt(4+9x^2) /2 + 3x /2 ) + C
------------------------------------------------------------------------------------------------------------------
∫ sqrt(4x^2-9) dx
Let x = (3/2) sec t
dx = (3/2) sec t tan t dt
4x^2-9 = 4(9/4) sec^2 t - 9 = 9 sec^2 t - 9 = 9 tan^2 t
sqrt(4x^2-9) = 3 tan t
∫ sqrt(4x^2-9) dx = ∫ (3 tan t) ( 3/2) sec t tan t dt
= (9/2) ∫ tan^2 t sec t dt
= (9/2) ∫ (sec^2 t - 1) sec t dt
= (9/2) ∫ sec^3 t dt - (9/2) ∫ sec t dt
substitute ∫ sec^3 t dt = (1/2) sec t tan t + (1/2) ln ( sec t + tan t ) ( previous problem)
= (9/2) [ (1/2) sec t tan t + (1/2) ln ( sec t + tan t ) ] - (9/2) ∫ sec t dt
= (9/4) sec t tan t + (9/4) ln (sec t + tan t) - (9/2) ln (sec t + tan t)
= (9/4) sec t tan t - (9/4) ln (sec t + tan t)
The substitution was x= (3/2) sec t
sec t = 2x/3
tan t = sqrt( sec^2 t -1) = sqrt( 4x^2 /9 -1) = (1/3) sqrt(4x^2-9)
(9/4) sec t tan t - (9/4) ln (sec t + tan t) = (9/4) (2x/3) (1/3) sqrt(4x^2-9) - (9/4) ln ( 2x /3 + sqrt(4x^2-9) /3)
= (1/2) x sqrt(4x^2-9) - (9/4) ln ( 2x /3 + sqrt(4x^2-9) /3)
∫ sqrt(4x^2-9) dx = (1/2) x sqrt(4x^2-9) - (9/4) ln ( 2x /3 + sqrt(4x^2-9) /3) + C