試證〖sin〗^2 θ+〖sin〗^2 (θ+2π/3)+〖

2014-08-06 8:22 pm
試證〖sin〗^2 θ+〖sin〗^2 (θ+2π/3)+〖


圖片參考:https://s.yimg.com/rk/AF02894231/o/673253651.jpg

回答 (1)

2014-08-06 10:53 pm
✔ 最佳答案
Sol
A=Sin^2 θ+Sin^2 (θ+2π/3)+Sin^2 (θ+4π/3)
2A=2Sin^2 θ+2Sin^2 (θ+2π/3)+2Sin^2 (θ+4π/3)
=1-Cos(2θ)+1-Cos(2θ+4π/3)+1-Cos(2θ+8π/3)
=3-Cos(2θ)-Cos(2θ+4πI/3)-Cos(2θ+8π/3)
=3-Cos(2θ)-Cos(2θ)Cos(4π/3)+Sin(2θ)Sin(4π/3)
-Cos(2θ)Cos(8π/3)+Sin(2θ)Sin(8π/3)
=3-Cos(2θ)-Cos(2θ)*(-1/2)+Sin(2θ)*(-√3/2)
-Cos(2θ)*(-1/2)+Sin(2θ)*(√3/2)
=3-Cos(2θ)+Cos(2θ)*(1/2)+Cos(2θ)*(1/2)
=3
A=3/2




收錄日期: 2021-04-30 18:34:03
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140806000015KK04189

檢視 Wayback Machine 備份