三角函數計算

2014-08-05 7:45 am
Suppose C:x^2+(y-1)^2=r^2 and y=sinx have only one intersection and the x-coordinate of this intersection point is α,
then [sinα+sin3α-4(cosα)^2]/(α*cosα) = _______.

Ans: -4
更新1:

關於微分的那一部份 如果不用微分處理 是否有其他解法? 先謝謝螞蟻雄兵知識長~

回答 (2)

2014-08-05 3:32 pm
✔ 最佳答案
SupposeC:x^2+(y-1)^2=r^2 and y=Sinx haveonly one intersection and the x-coordinate
of this intersection point is “α”,then (Sinα+Sin3α-4Cos^2 α)/(α*Cosα)=?
Sol
x^2+(y-1)^2=r^2與y=Sinx只有一交點
(0,1)到y=Sinx距離=r
x^2+(y-1)^2=r^2,y=Sinx
x^2+(Sinx-1)^2=r^2
x^2+(y-1)^2=r^2
2x+2(y-1)y’=0
y’=x/(1-y)
y=Sinx
y’=Cosx
x/(1-y)=Cosx
1-y=x/Cosx
y=1-x/Cosx=Sinx
1-α/Cosα=Sinα
1-Sinα=α/Cosα…………………
Sinα+Sin3α-4Cos^2 α
= Sinα+3Sinα-4Sin^3α-4Cos^2 α
=4Sinα(1-Sin^2α)-4Cos^2 α
=4SinαCos^2 α-4Cos^2 α
=4Cos^2 α(Sinα-1)
=4Cos^2 α(Sinα-1)
=-4αCosα
So
(Sinα+Sin3α-4Cos^2 α)/(α*Cosα)=-4


2014-08-07 7:37 am
我也認為 螞蟻雄兵 ( 知識長 ) 這個微分計法很強勁!

╭∧---∧╮
│ .✪‿✪ │
╰/) ⋈ (\\╯


收錄日期: 2021-04-30 18:57:23
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140804000015KK09130

檢視 Wayback Machine 備份