F.4 maths Quadratic Equations

2014-07-27 6:28 pm
1) Given the quadratic equation ax^2+bx+c=0, where a, b and c are positive, does the
equation have a positive root? Explain your answer.

2) If the quadratic equation x^2+bx+c=0 has roots of opposite signs, is it possible that c is
positive?Explain your answer.

求教! 請詳細解釋和列出解題過程,感謝萬分!!

回答 (4)

2014-07-29 4:11 am
✔ 最佳答案
知識+又多左個老師啦 =]

btw,
頭先我諗住打第1題,點解發表左之後會有1part內容會唔見左?....

2014-07-27 18:27:19 補充:
第1題 (睇黎都係要用連結...)
http://postimg.org/image/qy6nnzd29/
唔知我呢個寫法o唔ok??

2014-07-27 19:30:16 補充:
果 然 犀 利 ! !

2014-07-27 21:55:39 補充:
因為我嘅意見變左做

哈利波特2外傳 - 消失的意見

2014-07-27 22:09:13 補充:
各位知識友,

現家我想徵用各位的答案去回答發問者嘅問題,

唔知大家反唔反對??

2014-07-28 20:11:24 補充:
Here are some methods to solve the questions.

1)
Method of 少年時 ( 專家 2 級 ):
ax²+bx+c=0

Let α and β be the roots of the equation,
as αβ = c/a, while a, b, c are all positive,

so α, β should both negative or both positive.
At the same time, α+β = -b/a, so they are both negative.
That is, the equation has no positive root.


Method of Masterijk ( 知識長 ):
If there exists a root x which is positive, with a, b, c being positive,

ax² + bx + c must be positive, it CANNOT BE zero.

Therefore, no positive root.


Method of Mr Kowk ( 博士級 1 級 ):
ax²+bx+c=0

Suppose the quadratic equation ax^2+bx+c=0 has a positive root,
that is x = [-b+√(b²-4ac)]/(2a) > 0
-b+√(b²-4ac) > 0
√(b²-4ac) > b
(b²-4ac) > b²
-4ac > 0
ac < 0
Since a,c are positive number, the multiplication of a and c MUST BE positive number.
∴It is a contradiction.
∴The equation has no positive root.

2)
Method of Mr Kowk ( 博士級 1 級 ):
ax²+bx+c=0
αβ = c/a

when a = 1
αβ = c
∴α and β are opposite signs, αβ < 0, then c < 0
∴c must be negative.

2014-07-28 20:12:21 補充:
謝謝大家的支持 = ]
參考: 意見區
2014-07-28 3:16 am
Too complicated, you can say,
Let α and β be the roots of the equation,
as αβ = c/a, while a, b, c are all positive, so α, β should both negative or both
positive. At the same time, α+β = -b/a, so they are both negative.
That is, the equation has no positive root.

答多一、兩題你就升級了,努力!

2014-07-28 07:49:59 補充:
當然不反對,既然你說明是徴用,那你連抄襲的意思都沒有,那有甚麼問題呢!

快點升級吧!
2014-07-27 11:43 pm
郭老師回來,大家很高興!

2014-07-27 17:47:05 補充:
哈哈哈~郭老幽默了~

HK~: 可能是又有字眼觸動了系統,小心。
你快去投票、評價賺點數,幾日內可以升級!!!

2014-07-27 21:02:40 補充:
我又想用另一個方法答呀!!!

If there exists a root x which is positive, with a, b, c being positive,

ax² + bx + c must be positive, it CANNOT BE zero.

Therefore, no positive root.

Done!

如何?

2014-07-27 21:13:52 補充:
聽講以前更強,後來有好多知識友被偉大的「系統」、「管理員」、人事鬥爭、惡意玩弄等等人性的醜惡一併欺壓,最後愔然離開了。

我地都唔可以確定下一個「愔然離開」的係咪我地...

2014-07-27 21:14:30 補充:
咦?

點解 HK~ 的 014 意見消失了!?!?

2014-07-27 22:01:42 補充:
你綜合大家的意見,去答題啦~

快D升級~

2014-07-27 22:18:58 補充:
我贊成。

[個人意見:大家應該不會介意,因為否則大家已經作答了。]

2014-07-28 08:20:34 補充:
對,大家都好想你快d升級~!

加油!

╭∧---∧╮
│ .✪‿✪ │
╰/) ⋈ (\\╯
2014-07-27 9:41 pm
2 ax²+bx+c=0

αβ = c/a

when a = 1

αβ = c

α and β are opposite signs, αβ < 0; c < 0; c must be negative.

2014-07-27 17:22:52 補充:
多謝你們的 ( 惠康 )。

~~~~~~~~~~

2014-07-27 21:37:09 補充:
這個如何



x = [-b+√(b²-4ac)]/2a > 0

-b+√(b²-4ac) > 0

√(b²-4ac) > b

(b²-4ac) > b²

-4ac > 0

所以 假設 不成立。

2014-07-27 22:23:43 補充:
我唔反對。


~~~~~~~~~~~~~~~~~~~~


收錄日期: 2021-04-27 20:37:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140727000051KK00024

檢視 Wayback Machine 備份