關於一些工程數學的題目

2014-07-22 6:30 am
下列幾題是拉普拉斯轉換求解

1. F(s) = 1 / [ (s^2 - 2)^2 + 1 ]
2. F(s) = 1 / (s^2 - 4s + 13)
3. F(s) = ( s - 2) / ( s^2 - 4s + 13 )
4. F(s) = s / ( s^2 - 2s + 5)
5. F(s) = ( 4s - 23 ) / ( s^2 - 4s + 13 )
6. F(s) = s / ( s^2 - 4s + 13 )

回答 (3)

2014-07-22 1:19 pm
✔ 最佳答案
1.F(s)=1/[(s^2-2)^2+1]=1/(s^4-4s^2+4+1)=1/(s^4-4s^2+5)判別式: D=4^2-4*5=-4<0分母=虛根不能轉換
2.F(s)=1/(s^2-4s+13)=1/[(s^2-4s+4)+9]=1/[(s-2)^2+9]=(1/3)*3/[(s-2)^2+9]ans: f(t)=(1/3)*e^2t*sin(3t)公式: L{e^at*f(t)}=F(s-a)
3.F(s)=(s-2)/(s^2-4s+13)=(s-2)/[(s-2)^2+9]ans: f(t)=e^2t*cos(3t)公式: L[sin(at)]=a/(s^2+a^2)L[cos(at)]=s/(s^2+a^2)
4.F(s)=s/(s^2-2s+5)=[(s-1)+1]/[(s-1)^2+4]=(s-1)/[(s-1)^2+4]+0.5*2/[(s-1)^2+4]=e^t*cos(2t)+0.5e^t*sin(2t)=e^t{cos(2t)+0.5sin(2t)}
5.F(s)=(4s-23)/(s^2-4s+13)=4(s-23/4)/[(s-2)^2+9]=4(s-2-15/4)/[(s-2)^2+9]=4(s-2)/[(s-2)^2+9]-5*3/[(s-2)^2+9]=4e^2t*cos(3t)-5e^2t*sin(3t)=e^2t*{4cos(3t)-5sin(3t)}

6.F(s)=s/(s^2-4s+13)=(s-2+2)/[(s-2)^2+9]=(s-2)/[(s-2)^2+9]+(2/3)*3/[(s-2)^2+9]=e^2t*cos(3t)+(2/3)*sin(3t)=e^2t*{cos(3t)+(2/3)*sin(3t)}
2014-07-22 3:12 pm
>這家不錯 lv333。cC買幾次啦真的一樣
匤俲匢
2014-07-22 11:14 am
1. 請檢查題目
2. (1/3) e^(2t) sin(3t)
3. e^(2t) cos(3t)
4. (1/2) e^t [sin(2t) + 2 cos(2t)]
5. e^(2t) [4cos(3t) - 5sin(3t)]
6. (1/3) e^(2t) [2sin(3t) + 3cos(3t)]


收錄日期: 2021-04-30 18:57:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140721000015KK11083

檢視 Wayback Machine 備份