✔ 最佳答案
5.f(t)= sin(t), 0<=t<π, t>=πans: F(s)=1/(s^2+1)三角函數公式: L[sin(wt)]=w/(s^2+w^2)L[cos(wt)]=s/(s^2+w^2) 6.f(t)=2t³-5t+1ans: F(s)=2*3!/s^4-5/s^2+1/s=12/s^4-5/s^2+1/s公式: L(t^n)=n!/s^(n+1) 7.f(t)=(t+1)²=t^2+2t+1ans: F(s)=2!/s^3+2/s^2+1/s=2/s^3+2/s^2+1/s
8.f(t)=(t+1)³ =t^3+3t^2+3t+1ans:F(s)=3!/s^4+3*2!/s^3+3/s^2+1/s=6/s^4+6/s^3+3/s^2+1/s
9.f(t)=(e^t+e^-t)²=e^2t+2+e^(-2t)ans: F(s)=1/(s-2)+2/s+1/(s+2)
10. f(t)=cos(2t)+sin(3t)ans: F(s)=s/(s^2+4)+3/(s^2+9) 11.f(t)=e^2t-t²e^(-3t)ans: F(s)=1/(s-2)-2!/(s+3)^3=1/(s-2)-2/(s+3)^3公式: L{e^(at)*t^n}=n!/(s-a)^(n+1) 12.f(t)=(1-e^3t)²=1-2e^3t+e^6tans: F(s)=1/s-2/(s-3)+1/(s-6)
13.f(t)=sin(t)*cos(t)=0.5*sin(2t)ans: F(s)=0.5*2/(s^2+4)=1/(s^2+4) 14.f(t)=sin(t+a)=sin(t)*cos(a)+sin(a)*cos(t)=cos(a)/(s^2+1)+sin(a)*s/(s^2+1)=[cos(a)+sin(a)*s]/(s^2+1)
15.f(t)=sin〔t+π/4〕=sin(t)*cos(π/4)+cos(t)*sin(π/4)=√2/2*[sin(t)+cos(t)]ans: F(s)=(√2/2)*{1/(s^2+1)+s/(s^2+1)}=(√2/2)*(s+1)/(s^2+1)