✔ 最佳答案
If A = (a11, a12 ... a21, a22), B = (b11, b12 ... b21, b22)
then AB = (a11b11+a12b21, a11b12+a12b22 ... a21b11+a22b21, a21b12+a22b22)
So, if AB = I, then
a11b11+a12b21 = a21b12+a22b22 = 1 ⋯⋯ (i)
a11b12+a12b22 = a21b11+a22b21 = 0 ⋯⋯ (ii)
From (ii), we get
b22 = -a11b12/a12, b21 = -a21b11/a22
Sub. Into (i), we get,
a11b11 - a12a21b11/a22 = 1 and a21b12 - a22a11b12/a12 = 1
==> b11 = a22/(a11a22 - a12a21) and b12 = a12/(a12a21 - a11a22)
Let Δ = a11a22 - a12a21, then
b11 = a22/Δ, b12 = -a12/Δ, b21 = -a21/Δ, b22 = a11/Δ
So, B = (1/Δ)(a22, -a12 ... -a21, a11), which is the inverse of A (Δ is the det. of A).
Conclusion : If AB = I, then B should be the inverse of A.
2014-07-08 20:40:05 補充:
感謝 自由自在 知識長的指導。
As det(AB) = det(I) = 1, so det(A)<>0, so A is invertible.