integration ∫x^2 / (1+x^2) dx

2014-07-03 7:52 am
what are the steps of integration ∫x^2 / (1+x^2) dx ?
the answer is x-tan^(-1)(x) + C


i can't figure out T^T




THX

回答 (2)

2014-07-03 8:39 am
✔ 最佳答案
∫ (x² / (1+ x²) dx

= ∫ {[(1 + x²) -1] / (1 + x²)} dx

= ∫ {1 - [1 / (1 + x²)] dx

= ∫ dx - ∫[1 / (1 + x²)] dx

= x - tan⁻¹x +C
參考: 土扁
2014-07-03 9:15 am
Other method:
∫ x^2 / (1+x^2) dx
Let x=tanθ
dx=sec^2 θ dθ

∫ x^2 / (1+x^2) dx
=∫ tan^2 θ sec^2 θ / (1 + tan^2 θ) dθ
=∫ tan^2 θ sec^2 θ/ sec^2 θ dθ
=∫ tan^2 θ dθ
=∫ (sec^2 θ - 1) dθ
=tanθ - θ +C
=x - tan^(-1)(x) + C


收錄日期: 2021-04-15 15:57:06
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140702000051KK00181

檢視 Wayback Machine 備份