出邊顯示唔到~
你想call人黎答定係再發問?
呢幾日都係咁~
2014-07-01 06:44:52 補充:
大家,試下這樣計吧:
設 O₁ 的 半徑為 r₁、O₂ 的 半徑為 r₂、O₃ 的 半徑為 r₃、O₄ 的 半徑為 r₄,如此類推。
r₁ = r
r₂ = r₁ sin(180° ÷ 3 ÷ 2) = r₁ sin(30°)
r₃ = r₂ sin(360° ÷ 4 ÷ 2) = r₂ sin(45°)
r₄ = r₃ sin(540° ÷ 5 ÷ 2) = r₃ sin(54°)
...
r_n = r_{n-1} sin{ (n - 2) × 180° ÷ n ÷ 2 }
r_n = r_{n-1} sin{ (n - 2)90°/n }
2014-07-01 06:45:27 補充:
咦? 點解突然間可以顯示到??
╭∧---∧╮
│ .✪‿✪ │ ???
╰/) ⋈ (\\╯
2014-07-01 06:56:40 補充:
r_n = ∏{ k = 3 to n } sin{ (k - 2)90°/k }
= ∏{ k = 3 to n } sin{ (1 - 2/k)90° }
= ∏{ k = 3 to n } sin(90° - 180°/k)
= ∏{ k = 3 to n } cos(180°/k)
= ∏{ k = 1 to n - 2 } cos[180°/(k + 2)]
再用以下這個:
http://math.stackexchange.com/questions/454139/limit-of-cosines-product
2014-07-01 07:02:17 補充:
此極限之相關題目:
http://www.rqna.net/qna/rxrhqi-find-the-limit-of-prod-k-4-infty-cos-frac-pi-k.html
http://math.stackexchange.com/questions/829283/find-the-limit-of-prod-k-4-infty-cos-left-pi-over-k-right/829370
2014-07-04 06:29:12 補充:
我的理解是,在一個 circle 之中,畫一個 inscribed equilateral triangle,
再在這個 inscribed equilateral triangle 之中,畫一個 inscribed circle,
再在這個 inscribed circle 之中,畫一個 inscribed square,
再在這個 inscribed square 之中,畫一個 inscribed circle,
再在這個 inscribed circle 之中,畫一個 inscribed regular pentagon,
...
2014-07-04 22:54:02 補充:
好問題,但始終prove唔到個infinite product,不如你答
好似要引用另一個series
http://ckrao.wordpress.com/2011/08/05/collection-of-infinite-products-i
http://math.stackexchange.com/questions/366844/how-can-i-deduce-cos-pi-z-prod-n-0-infty1-4z2-2n12
https://answers.yahoo.com/question/index?qid=20120224214410AAaaHFP