Matrix

2014-06-29 7:56 pm
A is a symmetric matrix. B is a asymmetric matrix. Is it true that
AB + (BA)^T = 0 ? Please prove.

回答 (2)

2014-06-29 11:51 pm
✔ 最佳答案
﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

圖片參考:https://s.yimg.com/rk/HA05107138/o/1569821243.png
2014-06-30 12:06 am
Remark:

If A is symmetric and B is skew-symmetric, then it is true that
AB + (BA)^T = 0.

Note that the properties in this case are:
A^T = A
B^T = -B

Thus,
AB + (BA)^T = AB + A^TB^T = AB + A(-B) = AB - AB = 0

2014-06-29 16:07:22 補充:
Asymmetric simply means not symmetric, not necessarily skew-symmetric, so 自由自在 知識長 is definitely correct!

╭∧---∧╮
│ .✪‿✪ │
╰/) ⋈ (\\╯


收錄日期: 2021-04-23 23:25:42
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140629000051KK00050

檢視 Wayback Machine 備份