應用羅畢達定理求極限 2題 20點

2014-06-09 8:11 am

回答 (6)

2014-06-10 2:41 am
✔ 最佳答案
1
lim(x->0-)_(Sinx+Tanx)/[e^x+e^(-x)-2] 0/0 type
=lim(x->0-)_(Cosx+Sec^2 x )/[e^x-e^(-x)]
=lim(y->0+)_[Cos(-y)+Sec^2 (-y)])/[e^(-y)-e^y]
=lim(y->0+)_(Cosy+Sec^2 y)/[e^(-y)-e^y]
=-lim(y->0+)_(Cosy+Sec^2y)/(e^y-1/e^y)
=-∞

2
lim(x->0+)_∫(0 to x)_√tCostdt/x^2 0/0 type
=lim(x->0+)_√xCosx/(2x)
=lim(x->0+)_Cosx/(2√x)
=∞


2014-08-09 11:39 pm
到下面的網址看看吧

▶▶http://*****
2014-06-20 9:14 pm
到下面的網址看看吧

▶▶http://candy5660601.pixnet.net/blog
2014-06-10 9:52 pm
2014-06-09 5:57 pm
1.
lim(x->0-)(sinx + tanx)/(e^x + e^(-x) -2)
= lim(x->0-)(sinx + tanx)’/(e^x + e^(-x) -2)’
= lim(x->0-)(cosx + (secx)^2)/(e^x – e^(-x))
=(1+1)/(1-1)
=∞

2.
lim(x->0+)(∫﹝0,x﹞(√t)costdt)/x^2
= lim(x->0+)(∫﹝0,x﹞(√t)costdt)’/(x^2)’
= lim(x->0+)(√x)cosx/(2x)
=lim(x->0+)cosx/(2√x)
=1/0
=∞
2014-06-09 9:30 am
2題都是發散的

自己做就好了啊

很簡單

2014-06-09 05:17:59 補充:
我真的很懷疑這個麻辣是怎麼當版主的

那麼簡單的題目都會錯

答題十題有5題以上都是錯的

2014-06-09 14:04:16 補充:
給你們兩位

lim e^x - e^( -x ) = 0-
x→0-

所以答案是 負無限


收錄日期: 2021-04-30 18:52:31
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140609000010KK00078

檢視 Wayback Machine 備份