有關Log 未知數計算

2014-05-30 8:34 am
(1+14%/n)^n - 1 = 14.49%

請問n是什麼, 及請詳細例出步驟, 謝謝

回答 (5)

2014-05-31 4:54 pm
✔ 最佳答案

(1+14%/n)^n - 1 = 14.49%
==> 1 + 14% + [(n-1)/2n]*(14%)^2 + [(n-1)(n-2)/6n^2]*(14%)^3 + ... - 1 = 14.49%
==> [(n-1)/2n]*(0.14)^2 + [(n-1)(n-2)/6n^2]*(0.14)^3 + ... = 0.0049
因 0.14 的次方愈大,數值只會愈來愈小,所以只考慮到 n^2 項就足夠了,即
[(n-1)/2n]*(0.0196) + [(n-1)(n-2)/6n^2]*(0.002744) = 0.0049
==> 3n(n-1)(0.0196)+0.002744(n-1)(n-2)=0.0294n^2
==> 58800n^2 - 58800n + 2744n^2 - 8232n + 5488 = 29400n^2
==> 32144n^2 - 67032n + 5488 = 0
==> 82n^2 - 171n + 14 = 0
==> (n - 2)(82n - 7) = 0
==> n = 2 或 7/82 (不合,絕對值少於0.14的不合,因 (0.14/n) 的次方會愈來愈大)

所以 n=2。

2014-05-31 18:31:44 補充:
(1+14%/n)ⁿ - 1 = 14.8062610490368

答案不可能是5,此題應該是無解,因為右邊的最大值不超過 0.155,

可能你是說
(1+14%/n)ⁿ - 1 = 0.148062610490368

那 n 計算到大約是 5.00715, 如何明知 n 是整數,那當然會答n=5的。

2014-05-31 20:23:41 補充:
因只取至n^2, 即小數位6位, 你的題目有15位小數, 當然不準,
但誤差也只是0.143%, 是可接受的程度的。

2014-06-01 07:34:14 補充:
同意,一個程度低的學生,正常不懂問這類問題。
當然我亦假設他學了 binomial theorem, natural logarithm 及 limitation, (M1 / M2 課程),若未學其中一樣,他當然不懂我在寫甚麼的,也看不懂大家在討論甚麼的。説實的,這條題目的範圍太廣了。
2014-05-31 2:22 am
如果不是中學的話...

2014-05-31 20:35:57 補充:
回:知足常樂

其實complex number也頗為有用,但中學學的complex number比較簡單

=[
2014-05-31 12:02 am
要視乎你的年級。

如果是中學,可以試整數。

試 n = 1, 2, 3, ...

2014-05-31 15:08:59 補充:
回:HK~

其實以前中學係要學少少 numerical methods 的~

我一直都唔係太滿意而家的課程令學生完全唔識 numerical methods 的概念~

其實一d都唔難,但實際上有少少用,比起 complex number 更有用(日常生活中)。

2014-05-31 15:52:05 補充:
阿年,如果題目是

(1+14%/n)ⁿ - 1 = 14.8062610490368

〔答案是 n = 5〕

那麼你的方法的 quadratic equation 則不能解出 n = 5。

回答中可以解出 n = 2 是因為其餘的項包括 (n - 2),所以當 n = 2 時那些項會變成 0 。

2014-06-01 00:39:14 補充:
Re: 008 & 009

Yes I missed the percentage sign.
The point I want to make is that it is hard to teach them to judge from the order of magnitude of the error to decide how many terms to take from the binomial series.

2014-06-01 00:40:38 補充:
Re: 010:

Of course complex numbers are also useful, but in terms of generality and applications, I think that it is more worthwhile to teach numerical methods.

At least in the past, students have a sense of bisection method.
I do not need them to learn Newton's Raphson and others.

2014-06-01 00:42:12 補充:
Do you know why, this is because numerical methods teach us to approximate values and solve numerically. This is practically widely used in reality.

It is a fact that it loses the beauty of elegant pure mathematics, but this is an excellent branch of applied mathematics.
2014-05-30 8:05 pm
請問步驟是怎樣的
是否需要用log計算
2014-05-30 6:27 pm
n = 2 .....

2014-05-30 15:32:34 補充:
我唔識 >.<,我淨係識用 Bisection Method。


收錄日期: 2021-04-28 14:43:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140530000051KK00007

檢視 Wayback Machine 備份