F.4maths對數函數

2014-05-30 2:57 am
解下列方程。

1. ㏒(3x+1) - ㏒(x-1) = ㏒5

2. 12^2x+1 = 8^3x

3. ㏒(2x^2-19) = ㏒(5x-16)

抱歉,由於我的點數有限,因此未能贈送更多的點數!!希望各位能幫幫我!!
Thanks...

回答 (1)

2014-05-30 3:19 am
✔ 最佳答案

1.
㏒(3x+1) - ㏒(x-1) = ㏒5
㏒[(3x+1)/(x-1)] = ㏒5
(3x+1)/(x-1) =5
3x+1 =5x-5
2x=6
x=3

2.
12^(2x+1) = 8^3x
㏒12^(2x+1) = ㏒8^3x
(2x+1)㏒12= 3x ㏒8
2㏒12x+㏒12=3㏒8x
(2㏒12-3㏒8)x=-㏒12
x=-㏒12/(2㏒12-3㏒8)
x=-㏒12/㏒(12^2/8^3)
x=1.9589

3.
㏒(2x^2-19) = ㏒(5x-16)
2x^2-19= 5x-16
2x^2-5x-3=0
(x-3)(2x+1)=0
x=3 (捨去)or -1/2(捨去)
x无解


收錄日期: 2021-04-13 22:42:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140529000051KK00102

檢視 Wayback Machine 備份