F.4maths對數函數

2014-05-17 7:30 am
試不用計數機求下列各式的值。
1) 1/3㏒27 + 2/3㏒8 - ㏒20

化簡下列各式,其中x>0,x≠1及y>0。

1) ㏒4^√x + ㏒x^2 / ㏒√x

若s=㏒2及t=㏒3,試以s和t表示下列各項。
1a) ㏒60
b) ㏒5/9
c) ㏒0.45


還望有心人能幫幫我解決疑難,感激不盡!!

回答 (2)

2014-05-17 7:59 am
✔ 最佳答案
試不用計數機求下列各式的值。
1)
(1/3) log 27 + (2/3) log 8 - log 20
= (1/3) log 3³ + (2/3) log 2³ - log 20
= (1/3) x 3 log 3 + (2/3) x 3 log 2 - log 20
= log 3 + 2 log 2 - log 20
= log 3 + log 2² -log 20
= log 3 + log 4 - log 20
= log (3 x 4 / 20)
= log 0.6

(不用計算機,只能計至此答案。)


=====
化簡下列各式,其中x>0,x≠1及y>0。
1)
(log ⁴√x + log x²) / log √x
= [(1/4) log x + 2 log x] / [(1/2) log x]
= (9/4) / (1/2)
= 9/2
= 4.5


=====
若s = log 2 及 t = log 3,試以s 和 t 表示下列各項。
1a) log 60
b) log (5/9)
c) log 0.45
1a)
log 60
= log (2 x 3 x 10)
= log 2 + log 3 + log 10
= s + t + 1

b)
log (5/9)
= log (10/18)
= log 10 - log 18
= 1 - log (2 x 3 x 3)
= 1 - log 2 - 2 log 3
= 1 - s - 2t

c)
log 0.45
= log (9/20)
= log [(3 x 3) / (2 x 10)]
= 2 log 3 - log 2 - log 10
= 2t - s - 1
參考: 土扁


收錄日期: 2021-04-13 22:22:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140516000051KK00172

檢視 Wayback Machine 備份