Ratio Test

2014-05-03 2:20 am
Consider the series
圖片參考:https://s.yimg.com/rk/HA01048025/o/1477877959.png
where


圖片參考:https://s.yimg.com/rk/HA01048025/o/1725417507.png

In this problem you must attempt to use the Ratio Test to decide whether the series converges.

Compute


圖片參考:https://s.yimg.com/rk/HA01048025/o/1571569938.png

回答 (1)

2014-05-03 4:15 pm
✔ 最佳答案
a(n + 1) = (-10)^(n + 1)/{[ 2(n + 1) + 6] [ 8^(n + 1 + 3)]}
= (- 10)^(n + 1)/[ (2n + 8) 8^(n + 4)]
So a(n + 1)/an
= (-10)(2n + 6) 8^(n + 3) / (2n + 8) 8^(n + 4)
= (-10)[2n(1+ 3/n)/2n(1 + 4/n)] 8^(-1)
= (-10)(1 + 3/n) 8^(-1)/(1 + 4/n)
When n tends to infinity, the absolute value of the ratio tends to |(-10)/8|
= 5/4 > 1.
Therefore, the series does not converge.


收錄日期: 2021-04-25 22:43:16
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140502000051KK00107

檢視 Wayback Machine 備份