1題微積分的證明

2014-04-29 6:09 am
Use the fact that ln 4 > 1 to show that ln 4^m>m for m>1
Conclude that ln x can be made as large as desired by choosing x sufficiently large
What does this imply about lim x→∞ ln x?
更新1:

感動貓要回答阿 這樣我才能給你點數

回答 (11)

2014-04-30 5:49 am
✔ 最佳答案
ln 4 > 1
m ln 4 > m
ln 4^m > m

2014-04-28 23:19:46 補充:
When x is large, ln 4^x is larger, ln 4^{ln 4^x} is even larger...

This implies that lim x→∞ ln x does not exist (or the limit is +∞)

2014-04-29 21:49:29 補充:
Thank you Sandy~ (◕‿◕✿)

As discussed in the comment box,

consider

ln 4 > 1

m ln 4 > m [by multiplying m > 1 to both sides]

ln 4^m > m [by property of logarithm]

Therefore, for any m > 1, ln 4^m would be greater than m.

When x is large, ln 4^x is larger, ln 4^{ln 4^x} is even larger...

This implies that lim x→∞ ln x does not exist (or the limit is +∞).


2014-04-30 14:39:17 補充:
謝謝 老怪物 的意見~

希望發問者明白~
2014-06-16 2:40 am
到下面的網址看看吧

▶▶http://candy5660601.pixnet.net/blog
2014-06-05 1:39 pm
到下面的網址看看吧

▶▶http://candy5660601.pixnet.net/blog
2014-06-03 2:05 pm
到下面的網址看看吧

▶▶http://candy5660601.pixnet.net/blog
2014-05-29 3:17 pm
參考下面的網址看看

http://phi008780520.pixnet.net/blog
2014-05-27 12:13 pm
參考下面的網址看看

http://phi008780520.pixnet.net/blog
2014-05-24 1:15 pm
參考下面的網址看看

http://phi008780520.pixnet.net/blog
2014-05-22 11:38 pm
參考下面的網址看看

http://phi008780520.pixnet.net/blog
2014-04-30 6:26 pm
關於最後一個小問題 x→+∞ 時 ln(x) 的行為.

這需要一個結果 (定理): ln(x) 是 strictly increasing 的.

因此, 當 x 可以任意大時, 可找一個上升數列 m_1, m_2,...
x 大於 m_1, 所以 ln(x) > ln(m_1);
x 大於 m_2, 所以 ln(x) > ln(m_2);
以此類推.

所以 x 無限增大時, ln(x) 也無限增大.
2014-04-29 9:22 am
下面的網址應該對你有幫助

http://phi008780426.pixnet.net/blog


收錄日期: 2021-05-04 01:55:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140428000015KK07357

檢視 Wayback Machine 備份