先po照再詳解
https://docs.google.com/file/d/0B66P1dpXwBETUWZ0cE04TkpkUE0/edit
2014-04-25 17:32:51 補充:
先設∠ABD=k=∠DBC ,∠ABC=2k
∠ACB=p=∠BCE, ∠ACB=2p
由於AB=AC,所以∠ABC=∠ACB
=>k=p
∠ABD=∠DBC=∠ACB=∠BCE
2014-04-25 17:40:48 補充:
上圖錯已死檔
再po正確
https://docs.google.com/file/d/0B66P1dpXwBETeWd3R0dIaTU0XzA/edit?usp=drive_web
2014-04-25 17:55:20 補充:
再來看△ABC
∠ABC+∠ACB+∠CAB=180°
由於∠ABC=∠ACB
所以2∠ABC=180°-∠CAB
∠ABC=(180°-80°)/2=50°=2∠ABD
=>∠ABD=∠DBC=∠ACB=∠BCE=50°/2=25°
令BD與CE的交點為P
則在△PBC中
∠PBC+∠BCP+∠BPC=180°
(∠PBC=∠DBC,∠BCP=∠BCE)
∠BPC=180°-(∠PBC+∠BCP)=180°-(∠DBC+∠BCE)=180°-(25°+25°)
=130°
∠EPD=∠BPC=130°
2014-04-25 18:06:49 補充:
在四邊形EPDA中
∠DAE+∠EPD+∠AEP+∠ADP=360°
∠DAE=360°-(∠EPD+∠AEP+∠ADP)=360°-(130°+90°+90°)=180°-130°
=50°
因為∠AEC=∠ADB=90°
∠ABD=∠ACE
AB=AC
所以
△ABD≌△ACE(AAS
2014-04-25 18:08:23 補充:
先設∠ABD=k=∠DBC ,∠ABC=2k
∠AC"B"=p=∠BCE, ∠ACB=2p
由於AB=AC,所以∠ABC=∠ACB
=>k=p
∠ABD=∠DBC=∠AC"B"=∠BCE
應改成
先設∠ABD=k=∠DBC ,∠ABC=2k
∠AC"E"=p=∠BCE, ∠ACB=2p
由於AB=AC,所以∠ABC=∠ACB
=>k=p
∠ABD=∠DBC=∠AC"E"=∠BCE
2014-04-25 18:09:41 補充:
∠ABC=(180°-80°)/2=50°=2∠ABD
=>∠ABD=∠DBC=∠AC"B"=∠BCE=50°/2=25°
更正為
∠ABC=(180°-80°)/2=50°=2∠ABD
=>∠ABD=∠DBC=∠ACE=∠BCE=50°/2=25°