F.4續三角學

2014-04-08 3:04 am
1. 化簡下列各式。(希望能列詳細步驟...)

a) sin(180°+θ) + cos(270°+θ)

b) sin120°cos(270°+θ) - cos30°sin(-θ)

Thanks...

回答 (3)

2014-04-08 3:58 am
✔ 最佳答案
1. 化簡下列各式。

a) sin(180°+θ) + cos(270°+θ)

 sin(180°+θ) + cos(270°+θ)
= - sin(θ) + cos[360° - (90° - θ)]
= - sin(θ) + cos(90° - θ)
= - sin(θ) + sin(θ)
= 0

b) sin120°cos(270°+θ) - cos30°sin(-θ)

 sin120°cos(270°+θ) - cos30°sin(-θ)
= sin(180° - 60°) cos[360° - (90°-θ)] - cos30° sin(360° - θ)
= sin(60°) cos(90°-θ) - cos30° [-sin(θ)]
= sin(60°) cos(90°-θ) + cos30° sin(θ)
= sin(60°) sin(θ) + cos30° sin(θ)
= (√3 / 2) sin(θ) + (√3 / 2) sin(θ)
= √3 sin(θ)


2014-04-07 20:01:48 補充:
【教學】

[1] sin(180° - θ) = sin(θ)
[2] sin(180° + θ) = -sin(θ)
[3] sin(360° - θ) = -sin(θ)
[4] sin(360° + θ) = sin(θ)

[5] cos(180° - θ) = -cos(θ)
[6] cos(180° + θ) = -cos(θ)
[7] cos(360° - θ) = cos(θ)
[8] cos(360° + θ) = cos(θ)

2014-04-07 20:02:44 補充:
[9] tan(180° - θ) = -tan(θ)
[10] tan(180° + θ) = tan(θ)
[11] tan(360° - θ) = -tan(θ)
[12] tan(360° + θ) = tan(θ)

[13] sin(90° - θ) = cos(θ)
[14] cos(90° - θ) = sin(θ)
[15] tan(90° - θ) = 1/tan(θ)

2014-04-07 20:05:11 補充:
[A] 90° + θ = 180° - (90° - θ)
[B] 270° - θ = 180° + (90° - θ)
[C] 270° + θ = 360° - (90° - θ)


【例子】
 cos(270° - θ)
= cos[180° + (90° - θ)] 用 [B]
= -cos(90° - θ) 用 [6]
= -sin(θ) 用 [14]

2014-04-07 20:07:00 補充:
謝謝提供資訊~

請 Priscilla 也看看這兩個有用的連結!

☆ヾ(◕‿◕)ノ

2014-04-10 10:57:12 補充:
大和,你是否在答另一個帖的題目?
2014-04-10 3:55 am
1)sin(270-θ).sin(180+θ) / tan(180+θ)

=-cosθ . -sinθ / tanθ

=cosθsinθ / (sinθ/cosθ)

=cosθsinθ . (cosθ / sinθ)

=cos^2 θ



2)証明tan(90+θ)= -1/tanθ

tan(90 + θ) = sin(90 + θ) /cos(90 + θ)

= cosθ / -sinθ

= -(1/sinθ/cosθ)

= -1/tanθ




3)不使用計算機,求下列的值

cos240度 除以 tan315度

=cos(360 - 240)/tan(360 - 315)

=cos120 / tan(-45)

=cos(180 - 120) / -1

=-cos60 / -1

= 1/2



4)已知tanθ=-9/40及cosθ>0,試不求θ值而找出sinθ及cosθ的值

if tanθ=-9/40

r = sqrt(9^2 + 40^2)

=41

sinθ= x/r

=-9/40

cosθ=y/r

=40/41



5)求下列的θ值,其中90度<θ<270度(答案準確至3位有效數字)

a)tanθ=2.75

tanθ = 2.75

θ = 70.02

because 90度<θ<270度

so θ = 180 + 70.02

=250.02



b)sinθ=0.25

sinθ=0.25

θ=14.48

because 90度<θ<270度

so θ = 180 - 14.48

=165.52

2014-04-09 19:56:44 補充:
3)不使用計算機,求下列的值
cos240度 除以 tan315度
=cos(360 - 240)/tan(360 - 315)
(*)=cos120 / -tan(45)
=cos(180 - 120) / -1
=-cos60 / -1
= 1/2
(*) is the correct step...SOR

2014-04-09 19:57:02 補充:
sqrt(9^2 40^2)
= 開方 (9^2 40^2)


收錄日期: 2021-04-13 21:18:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140407000051KK00118

檢視 Wayback Machine 備份