請幫我解一下此題目,謝謝

2014-03-30 7:09 am
這一題很須要幫忙,謝謝

已知一等差級數有80項,前60項的和是60,後60項的和是120,則此級數前80項的總和為???
請幫我解一下,謝謝!

回答 (5)

2014-03-30 7:38 am
✔ 最佳答案
前60項的和為以下圖示:

圖片參考:https://s.yimg.com/rk/AC05386450/o/1582403741.png


後60項的和為以下圖示:

圖片參考:https://s.yimg.com/rk/AC05386450/o/1261453998.png


由兩式得知首項a1=-19/40 公差d=1/20

前80項的和為:


圖片參考:https://s.yimg.com/rk/AC05386450/o/646958853.png

參考: 等差級數和公式
2014-05-30 5:25 pm
參考下面的網址看看

http://phi008780520.pixnet.net/blog
2014-03-30 8:36 am
下面的網址能回答你的問題

▶▶http://*****
2014-03-30 7:40 am
我看錯了!

~~~~~~~~~~~
2014-03-30 7:38 am
郭老師:
差級數有80項 還是 120 項?

2014-03-29 23:58:38 補充:
比卡超答得那麼精彩~

我都是刪除吧~

2014-03-29 23:58:50 補充:
設等差數列的首項為 a , 公差為 d 。

那麼, 第 n 項是 a(n) = a + (n-1)d

等差級數有80項,

前60項的和是60,即 [a(1) + a(60)] × 60 ÷ 2 = 60

(a + a + 59d) × 30 = 60
2a + 59d = 2 ...[1]

後60項的和是120,即 [a(21) + a(80)] × 60 ÷ 2 = 120

(a + 20d + a + 79d) × 30 = 120
2a + 99d = 4 ...[2]

[2] - [1] 得 40 d = 2
d = 1/20

2014-03-29 23:59:11 補充:
由 [1] 或 [2] 可知 2a = -19/20 即 a = -19/40。

因此,80項的總和為

S(80)
= (a + a + 79d) × 80 ÷ 2
= (-38/40 + 79×1/20) × 40
= 120。


收錄日期: 2021-04-27 20:33:52
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140329000016KK06488

檢視 Wayback Machine 備份