✔ 最佳答案
令 y=f(x)=g(x), u=2^x+2^(-x)=> g(x)=y=k/u => u=k/y=> f(x)=y=4x+u/3=4x+k/3y => 3y^2-12x*y-k=0二次方程式解: y=[6x+-√(36x^2+3k)]/3=(6x+-D)/3 => A=(x,(6x+D)/3), B=(x,(6x-D)/3)=> AB=2*D/3=2√(36x^2+3k)]/3=4√17 => 36x^2+3k=36*17=> k=12(17-x^2)
y=f(x)=4x+u/3=g(x)=k/u=12(17-x^2)/u2次方程式: u^2+12x*u+36(x^2-17)=02次方程式解: u=6(√17-x)指數方程式: u=2^x+2^(-x)=6(√17-x)令h(x)=2^x+2^(-x)+6(x-√17)解出: x=2.876482 => h(2.876482)=0=> k=12(17-x^2)=104.71024.......ans
2014-03-29 20:11:36 補充:
題目更新:
令 y=f(x)=g(x), u=2^x+2^(-x)
u/3=k/u => 3k=u^2 => u=+-√(3k)
3k=(2^x+2^(-x))^2=4^x+2+4^(-x)
0=4^2x+(2-3k)4^x+1
4^x=[(3k-2)+-D]/2......D=√(9k^2-12k)
Ax={log[(3k-2)+D]-log(2)}/log(4)
Bx={log[(3k-2)-D]-log(2)}/log(4)
Ay=4*Ax+-√(3k)/3
By=4*By+-√(3k)/3
2014-03-29 20:12:26 補充:
Ax-Bx=log[(3k-2+D)/(3k-2-D)]/log(4)
Ay-By=4(Ax-Bx)=4*log[(3k-2+D)/(3k-2-D)]/log(4)
AB^2=(Ax-Bx)^2+(Ay-By)^2
=17*{log[(3k-2+D)/(3k-2-D)]/log(4)}^2
=(4√17)^2
log[(3k-2+D)/(3k-2-D)]/log(4)=4
log[(3k-2+D)/(3k-2-D)]=4*log(4)
(3k-2+D)/(3k-2-D)=4^4=256
=> 9216k^2-12288k-260100=0
2014-03-29 20:12:44 補充:
k=6.0208333, -4.6875......ans
2014-03-29 20:27:25 補充:
3k=u^2>0 => k=-4.6875拋棄
=> k=6.02083333
2014-03-30 07:23:56 補充:
補充: 合分比定律a/b=c/d => (a+b)/(a-b)=(c+d)(c-d)
(3k-2+D)/(3k-2-D)=256 => (3k-2)/D=257/255
255^2*(9k^2-12k)=255^2*(3k-2)^2
0=2304k^2-2*1536k-65025
k=6.0208333.......ans
k=-4.6875負值拋棄
2014-03-31 09:59:59 補充:
請問Ay = 4*±√3k/3是怎麼來的?
Ans:
Ay=y
=f(x)
=4x+u/3
=4*Ax+√(3k)/3.......u=√(3k)
=4*Ax+√(3k)/3