(1) r=O'C=?; R=OC=?; Area(OC)=? x=OAB, 2x=OO'B => sin(x)=9/r, cos(x)=√(r^2-81)/ry=BAC, 2y=BO'C => sin(y)=3/r, cos(y)=√(r^2-9)/rΔABO': AO'B=4x+2y => 37/2r=sin(2x+y)=sin(2x)*cos(y)+sin(y)*cos(2x)=2sin(x)*cos(x)*cos(y)+sin(x)*[1-2*sin^2(x)]={18√[(r^2-81)(r^2-9)]+3(r^2-2*81)}/r^3=> 0=r^2(335r^2-176904)r=22.979809=>22.98x=asin(9/r)=23.057(deg)y=asin(3/r)=7.50134(deg)2(x+y)=61.1169(deg)ΔACO': AO'C=4x+4yAC=2*r*sin(2x+2y)=40.24托勒密定理: R=OA=OCOB*AC+BC*OA=AB*OC => R(AB-BC)=OB*ACR=18*40.24/(37-6)=23.37Area=pi*R^2=1715.8(長度^2)......ans
2014-03-26 15:41:58 補充:
(2) 座標化:
A=(0,0), B=(c, 0), C=(c*cosA,c*sinA)
D=C+[c*cos(90+A),c*sin(90+A)]
=(c*cosA-c*sinA,c*sinA+c*cosA)
G=C+[a*cos(90-C),a*sin(90-C)]
=(c*cosA+a*sinC,c*sinA+a*cosC)
Slope(DG)={c*sinA+c*cosA-c*sinA-a*cosC}/分母
=(c*cosA-a*cosC)/分母
=0(水平)
=> c*cosA=a*cosC
So c=a, A=C.........ans
2014-03-27 09:53:52 補充:
圖形在
https://www.facebook.com/