✔ 最佳答案
第一題 2*2矩陣求Eigenvectors,Eigenvalues 特徵向量和特徵值與對角化A=[5 3]
..[1 3]0=|5-x 3..|
..|1 ..3-x|=(x-5)(x-3)-3=x^2-8x+12=(x-2)(x-6)x=2,6.....ans
{0}=[-1 .3]*{u}......as x=6
{0}.[.1 -3].{v}u=3v => {3/√10 1/√10}^t
{0}=[3 3]*{u}......as x=2
{0}.[1 1].{v}u+v=0 => {1/√2 -1/√2}^t.....^t=倒置矩陣
Ev={3/√10 .1/√2}
...{1/√10 -1/√2}.....ans
D=[6 0]
..[0 2].......ans
第二題ODE x^2*y"+xy+9y=0,y(1)=2,y'(1)=2.5Let x=e^u => u=ln(x), du/dx=e^(-u)y'=(dy/du)(du/dx)=e^(-u)*Dy.....D=d/duy"=d[e^(-u)*Dy)]/du](du/dx)=[e^(-u)D^2y-e^(-u)Dy]*e^(-u)=e^(-2u)(D^2y-Dy)
代入原式: 0=D^2y-Dy+Dy+9y=(D^2+9)yD=+-3jy(u)=a*cos(3u)+b*sin(3u)y(x)=a*cos(ln(x^3))+b*sin(ln(x^3))y(1)=a*cos(0)+b*sin(0)=a=2
y'(x)=-a*sin[ln(x^3)*3/x+b*cos[ln(x^3)]*3/x=(3/x){-a*sin[ln(x^3)+b*cos[ln(x^3)]y'(1)=3{-a*sin(0)+b*cos(0)}=3b=5/2=> b=5/6
Ans: y(x)=2*cos(ln(x^3))+(5/6)*sin(ln(x^3))
2014-03-23 08:21:48 補充:
沒有被刪文.可以繼續作.....
第三題ODE
Y'=[.0 -3]Y+{-3}
...[-3 .0]..{.9}
Y={x}
..{y}
使用微分法最快捷:
原式為: x'=-3y-3, y'=-3x+9
x"=-3y'
=-3(-3x+9)
0=x"-9x+27=D^2-9
D=+-3
齊次解為: xh=a*e^3t+b*e^(-3t)
特殊解為: xp=c => xp'=xp"=0
代入原式: 0=-9c+27 => c=3
Ans: x(t)=a*e^3t+b*e^(-3t)+3
2014-03-23 08:22:16 補充:
同樣的方法: 0=y"-9y-9
yh=f*e^(3t)+g*e^(-3t)
yp=-1
Ans: y(t)=f*e^(3t)+g*e^(-3t)-1