Indefinite Integral 2
回答 (2)
諗住改answer
點知成題delete左 -.-
2014-03-14 00:40:55 補充:
∫ 89 / √(24-16x-64x^2) dx
= 89 ∫ dx / √[24-64(x^2+x/4)]
= 89 ∫ dx / √[25-64(x+1/8)^2]
2014-03-14 00:41:21 補充:
Let x+1/8=5sinθ /8
dx=5cosθ /8 dθ
89 ∫ dx / √[25-64(x+1/8)^2]
= 89 ∫ (5cosθ /8) dθ / √[25-64(5sinθ /8)^2]
= 89 ∫ (5cosθ /8) dθ / √[25(cosθ)^2]
= 89 ∫ (5cosθ /8) dθ / (5cosθ)
= 89/8 ∫ dθ
= 89/8 θ + C , where C is a constant
2014-03-14 00:41:51 補充:
x+1/8=5sinθ /8
sinθ=(8x+1)/5
θ=sin^(-1) [(8x+1)/5]
∴ ∫ 89 / √(24-16x-64x^2) dx
= 89/8 sin^(-1) [(8x+1)/5] + C , where C is a constant
收錄日期: 2021-04-30 16:50:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140313000051KK00218
檢視 Wayback Machine 備份