✔ 最佳答案
1.When the height is 10 cm, Let the base area be A1.
When the height is 18 cm, Let the base area be A2.
(1/3)(A1)(10) = 1500
A1 = 450 cm²
(A2)/(A1) = (18/10)²Since they are similar figures
A2 = (18/10)²(A1) = 1458 cm²
Total volume : (1/3)(1458)(18) = 8748 cm³
Volume of water that should be added in order to fill the pyramid completely :
8748 cm³ - 1500 cm³ = 7248 cm³
2014-03-13 20:03:56 補充:
2. Let the radius of the circle containing point J be r1 and radius of the circle containing point M be r2.
Let height of cone OJK be h1 and height of cone OMN be h2
Volume of cone OJK = (1/3)(π)(r1)²(h1)
Volume of cone OMN = (1/3)(π)(r2)²(h2)
2014-03-13 20:08:27 補充:
r1 : r2 = OJ : OM = 2 : 5
h1 : h2 = OJ : OM = 2 : 5
Volume of cone OMN : Volume of cone OJK = (1/3)(π)(r2)²(h2) : (1/3)(π)(r1)²(h1)
= (r2/r1)²(h2/h1) = (5/2)²(5/2) = 125/8
Ratio of volume of cone OJK to that of the frustum
2014-03-13 20:14:21 補充:
Let V1 = volume of cone OJK ; V2 = volume of cone OMN。
Ratio of volume of cone OJK to that of the frustum
= volume of cone OJK / (volume of cone OMN - volume of cone OJK)
= V1 / (V2 - V1)
= (V1/V1) / [(V2 - V1)/V1] = 1 / (V2/V1 - 1) = 1 / (125/8 - 1) = 1 / (117/8)
2014-03-13 20:14:43 補充:
= 8 : 117