F.4 Maths binomial expressions

2014-03-12 8:26 pm
1.(n+3)!/(n+1)!
2.nCn-1*nCn
更新1:

我還是不明白這部份n! / [1! * (n-1)!]

更新2:

那這部份呢?n! / (n-1)! = n

回答 (3)

2014-03-12 8:57 pm
✔ 最佳答案
nCr = n! / [(n-r)! * r!]

1. (n+3)! / (n+1)!
= (n+3)(n+2)(n+1)! / (n+1)!
= (n+3)(n+2)

2. nCn-1 * nCn
= n! / [1! * (n-1)!] * n! / [0! * n!]
= n * 1
= n

2014-03-12 13:21:19 補充:
r 是 n-1,代入就是了。

nCn-1 = n! / {[n - (n-1)] * (n-1)!} = n! / (n-1)! = n

2014-03-12 15:04:23 補充:
多謝兩位老師幫手解釋 (Uncle Michael 及 批卷貓)。
2014-03-12 10:25 pm
米高叔叔~

很久不見了~

相信你收到我之前的電郵吧~

(。◕‿◕。)

2014-03-12 14:26:23 補充:
smile:

n! / (n-1)! = [n*(n-1)*(n-2)*...*2*1] / [(n-1)*(n-2)*...*2*1] = n

簡單來說:

n! / (n-1)! = [ n(n-1)! ] / (n-1)! = n
2014-03-12 9:57 pm
n! = n x (n-1) x (n-2) x ...... x 2 x 1 = n x (n-1)!

所以 n!/(n-1)! = [n x (n-1)!]/(n - 1)! = n


收錄日期: 2021-04-23 23:07:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140312000051KK00064

檢視 Wayback Machine 備份