✔ 最佳答案
設A(2,3,0) ,B(0,6,0),C(-2,-3,-4),平面E:x+2y-2z+5=0
求AB線段在平面E上之正投影A'B'線段之長Ans:AB=B-A=(0,6,0)-(2,3,0)=(-2,3,0)=> |AB|=√13N=Normal of E=(1,2,-2)=> |N|=3Qc=angle of BA & NcosQc=AB.N/|AB|*|N|=(-2+6)/√(13*9)=(4/3√13)sinQc=√101/3√13|A'B'|=|AB|*sinQc=√13*√101/3√13=√101/3......ans
2014-03-11 20:43:15 補充:
求三角形ABC在平面E上之正投影三角形A'B'C'之面積?
同樣的方法:
CB=(2,9,4) => |CB|=√101
cosQa=CB.N/3√101
=(2+18-8)/3√101
=4/√101
sinQa=√85/√101
|B'C'|=|BC|*sinQa
=√101*√85/√101
=√85
2014-03-11 20:43:58 補充:
CA=(2,3,0)-(-2,-3,-4)
=(4,6,4)
=> |CA|=2√17
cosQb=CA.N/6√17
=(4+12-8)/6√17
=4/3√17
sinQb=√137/3√17
|C'A'|=|CA|*sinQb
=2√137/3
2014-03-11 20:49:18 補充:
s=(a+b+c)/2=10.186318
Area=√[s(s-a)(s-b)(s-c)]
=12.66667......ans
2014-03-13 07:18:12 補充:
補充: 使用投影法
直線AA'為: (x-2)/1=(y-3)/2=z/(-2)=t
x=t+2, y=2t+3, z=-2t
代入E裡面:
0=x+2y-2z+5
=(t+2)+(4t+6)+4t+5
=9t+13
t=-13/9
=> A'=(t+2,2t+3,-2t)=(5,1,26)/9
同樣的方法:
B'=(-17,20,34)/9, C'=-(28,37,26)/9
ac=A'-C'=(28,38,52)/9
bc=B'-C'=(6,57,60)/9
abc=bc x ac=(684,1368,1368)/81
Area=|abc|/2
=38/3
2014-03-13 07:18:26 補充:
=12.6666667