急 ! F5 probability唔明 #513

2014-03-09 4:47 am
請詳細解釋下題原因 : In an examination, there are Question 1,2and 3 which take 2 marks, 3 marks and 5 marks respectively. The probabilitythat Lufia answers Question 1,2 and 3 correctly is 0.7, 0.6 and 0.4respectively. The passing mark of the examination is 5 marks.If the probability that Lufia passes the examinationis 0.652 a)Given that Lufia passes theexamination, find the probability that she answers Question 3 correctly.答案: 1-[(0.7)(0.6)(1-0.4)/0.652] =100/163 這題我明b)Given that Lufia she answersQuestion 1 correctly, find the probability that she passes the examination.我做: 1- [0.652/(1-0.7)(0.6)(0.4)] 這題與(a)差不多但做法為甚麼錯 正確答案 : 0.76

回答 (1)

2014-03-09 4:59 am
✔ 最佳答案
好,你比較趕急,我直接針對你不明白的部份講解。

(b) 正確的做法

Pr( pass exam | Q1 is correct )

= Pr( pass exam ∩ Q1 is correct ) / Pr( Q1 is correct )

留意以上 ∩ 是 and 的意思。

分母 = Pr( Q1 is correct ) = 0.7

留意分子的事件 { pass exam ∩ Q1 is correct }
即 Q1 要正確 且 得到 5 marks 或以上
即 Q1 要正確 且 不能 Q2, Q3 皆錯
機會為 0.7 × [1 - (1 - 0.6) × (1 - 0.4)]

因此,所求概率為
Pr( pass exam | Q1 is correct )
= 0.7 × [1 - (1 - 0.6) × (1 - 0.4)] / 0.7
= 1 - (1 - 0.6) × (1 - 0.4)
= 1 - 0.4 × 0.6
= 1 - 0.24
= 0.76

總結一下,以上用了公式
Pr( A | B ) = Pr(A and B) / Pr(B)


試分析一下你的公式:

1 - [0.652/(1-0.7)(0.6)(0.4)]

= 1 - Pr( pass ) / { Pr( Q1 wrong ) Pr( Q2 correct ) Pr( Q3 correct )}

似乎不符合情況要求。

2014-03-08 21:08:54 補充:
再補充一下你明白的 (a) 部。
其實可以做得更簡單。

Pr( Q3 correct | pass exam )
= Pr( Q3 correct and pass exam ) / Pr( pass exam )

留意分子的事件 { Q3 correct and pass exam }
要求 Q3 正確 且 及格

Q3 正確己得 5 marks,必定及格。
所以 {Q3 正確 AND 及格} 即 {Q3 正確}

因此,Pr( Q3 correct and pass exam ) = Pr( Q3 correct ) = 0.4

所以概率為 0.4 / 0.652 = 100/163

2014-03-08 21:11:30 補充:
另一方面,題目提供的 the probability that Lufia passes the examinationis 0.652 也可以不提供,而要求考生計算。

Pr( pass ) = Pr( marks ≥ 5 ) = 1 - Pr( marks < 5 )
= 1 - Pr( marks = 0 or marks = 2 or marks = 3 )
= 1 - [ Pr( marks = 0) + Pr( marks = 2 ) + Pr( marks = 3 ) ]
= 1 - 0.3×0.4×0.6 - 0.7×0.4×0.6 - 0.3×0.6×0.6
= 0.652


收錄日期: 2021-04-13 20:17:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140308000051KK00154

檢視 Wayback Machine 備份