急 ! F4數about Polynomica #111

2014-03-05 5:23 pm
請詳細步驟教我計下條 :


圖片參考:https://s.yimg.com/rk/HA05788109/o/539319592.jpg

回答 (1)

2014-03-05 6:54 pm
✔ 最佳答案
111(a). f(x + 1/x) = (2x)^3 + 3
Put x = 1, we get,
f(1 + 1/1) = (2*1)^3 + 3 = 11
therefore, f(2) = 11

111(b). By using the remainder theorem, the remainder is :
f(2)
= 11

112(a). f(1) = 2, g(2) = 1, let h(x) = f(x) - 2g(x+1) + 1, therefore,
the remainder when h(x) is divided by (x - 1) is :
h(1)
= f(1) - 2g(1+1) + 1
= f(1) - 2g(2) + 1
= 2 - 2x1 + 1
= 1

112(b). [f(g(2))]^2
= [f(1)]^2
= 2^2
= 4

2014-03-05 17:41:06 補充:
Put x = 1,可以做到 f(2)。
如果 put x = 2,x + 1/x = 2 + 1/2 = 2.5,只做到 f(2.5),做不到 f(2)。

2014-03-05 17:42:53 補充:
若 x + 1/x = 2,可得
x^2 + 1 = 2x
==> x^2 - 2x + 1 = 0
==> (x - 1)^2 = 0
==> x = 1


收錄日期: 2021-04-13 20:12:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140305000051KK00022

檢視 Wayback Machine 備份