求聯集機率

2014-03-05 3:06 pm
P(A)=1/3,P(B)=1/4,P(C)=1/5,若ABC互相獨立,則P(A聯集B聯集C)=?

回答 (3)

2014-03-05 9:14 pm
✔ 最佳答案
獨立事件和互斥事件是不相同的

獨立事件:P(A∩B) = P(A)P(B)
互斥事件:P(A∩B) = 0

A,B,C互相獨立

P(A∪B∪C)=P(A)+P(B)+P(C)-P(A∩B)-P(B∩C)-P(C∩A)+P(A∩B∩C)
= P(A)+P(B)+P(C)-P(A)P(B)-P(B)P(C)-P(C)P(A)+P(A)P(B)P(C)
= 1/3 + 1/4 + 1/5 - (1/3)(1/4) - (1/4)(1/5) - (1/5)(1/3) + (1/3)(1/4)(1/5)
= 47/60 - 12/60 + 1/60
= 36/60
= 3/5

^___^


2014-03-06 17:38:43 補充:
有道理耶! 還是老怪物大師高招!
2014-03-07 1:30 am
A, B, C 相互獨立, 則其 "餘事件" A', B', C' 也相互獨立.

P(A∪B∪C) = 1-P(A'∩B'∩C') = 1-P(A')P(B')P(C')
= 1 - (1-1/3)(1-1/4)(1-1/5) = 3/5.
2014-03-05 4:09 pm
P(A)=1/3,P(B)=1/4,P(C)=1/5,若A,B,C互相獨立,則P(A∪B∪C)=?
Sol
A,B,C互相獨立
P(A∪B∪C)
=P(A)+P(B)+P(C)
=1/3+1/4+1/5
=(20+15+12)/60
=47/60




收錄日期: 2021-04-30 18:03:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140305000010KK01164

檢視 Wayback Machine 備份