✔ 最佳答案
偏微分方程PDE,說明解題過程,有看不懂的地方Ans:y*Ux-2xy*Uy=2x*U邊界條件: U(0,yo)=yo^3Let dx/ds=y.....(1) dy/ds=-2xy.....(2)(1),(2)兩者合併:dy/ds=-2x*y=-2x*(dx/ds) => dy+2xdx=0兩邊積分: y(s)+x(s)^2=C.....(3)移項: C-x(s)^2=y(s)=dx/ds.....Eq.(1)邊界條件: s=0, y=yo => dx/ds=yo-x^2Let U(x,y)=(y+x^2)^m/y^n.....Eq.(3)邊界條件: U(0,yo)=yo^m/yo^n=yo^3=> m=n+3n=1 => m=4=> U(x,y)=(y+x^2)^4/y
2014-03-04 16:27:23 補充:
修正:
y*Ux-2xy*Uy=2x*U
邊界條件: U(0,yo)=yo^3
全微分: dU/ds=Ux*(dx/ds)+Uy*(dy/ds)
=Ux*y+Uy*(-2xy).....dx/ds=y, dy/ds=-2xy
=原式左邊
=2x*U.....原式右邊
=-(dy/yds)*U.....由dy/ds=-2xy
0=dU/ds+(dy/yds)*U
=dU/U+dy/y
ln(C)=∫dU/U+dy/y=ln(U*y)
y*U=C => U(x,y)=C/y
2014-03-04 16:27:54 補充:
但是C=y+x^2.....由Eq.(3)
=> U(x,y)=C/y=(y+x^2)^m/y
邊界條件: U(0,yo)=yo^m/yo=yo^3 => m=4
=> U(x,y)=(y+x^2)^4/y.....ans
2014-03-04 18:34:35 補充:
繼續修正:
這兩個C不一樣
C=y+x^2.....由Eq.(3)
U(x,y)=C1/y
=C^4/y........C1=C^4
=(y+x^2)^4/y......ans
2014-03-05 19:24:40 補充:
重新整理:
全微分: dU/ds=Ux*(dx/ds)+Uy*(dy/ds)
=Ux*y+Uy*(-2xy).......Let dx/ds=y, dy/ds=-2xy
=原式左邊
=2x*U.......原式右邊
=-(dy/yds)*U.......由dy/ds=-2xy
2014-03-05 19:25:01 補充:
0=dU/ds+(dy/yds)*U
=dU/U+dy/y
ln(C)=∫dU/U+dy/y=ln(U*y)
y*U=C1 => U(x,y)=C1/y
2014-03-05 19:25:22 補充:
現在回頭來看dx/ds=y, dy/ds=-2xy, 兩者相除:
dx/dy=-y/2xy=-1/2x => 2xdx+ydy=0
兩邊積分: y+x^2=C2
2014-03-05 19:25:48 補充:
邊界條件: U(0,yo)=yo^3
Let C1=C2^n
U(x,y)=C1/y
=C2^n/y
=(y+x^2)^n/y
=(yo+0)^n/yo
=yo^n/yo
=yo^(n-1)
=yo^3 => n=4
=> U(x,y)=(y+x^2)^4/y