急! F4 polynomicals 1題 #7

2014-03-01 3:20 am
請詳細步驟教我計下條 :

Let f(x)=2x^3-9x+8k, where k is a constant. If the remainder is k when f(x) is divided by x-k, find the remainder when f(x) is divided by x-2k.

回答 (2)

2014-03-01 3:50 am
✔ 最佳答案
點解最近你問問題都不結束帖子,反而刪除發問?
係咪有咩苦衷? :-(
你可以 email 同我講。
我估你而家已經考完 mock,作最後的衝刺?
努力啦~ ☆ヾ(◕‿◕)ノ


f(x) = 2x³ - 9x + 8k, where k is a constant.

The remainder is k when f(x) is divided by x - k.

⇒ f(k) = k

⇒ 2k³ - 9k + 8k = k

⇒ 2k³ - 2k = 0

⇒ k³ - k = 0

⇒ k(k² - 1) = 0

⇒ k(k - 1)(k + 1) = 0

⇒ k = 0 or k = 1 or k = -1

The remainder when f(x) is divided by x - 2k is f(2k).

f(2k) = 2(2k)³ - 9(2k) + 8k
= 2(8k³) - 18k + 8k
= 16k³ - 10k

If k = 0, f(2k) = 0.
If k = 1, f(2k) = 16 - 10 = 6.
If k = -1, f(2k) = -16 + 10 = -6.

2014-02-28 19:52:12 補充:
螞蟻雄兵,是否有誤??

題目應是 f(x) = 2x³ - 9x + 8k 。

2014-03-01 13:33:17 補充:
If k = 0, f(2k) = 0 = 6*0 = 6k
If k = 1, f(2k) = 16 - 10 = 6 = 6*1 = 6k
If k = -1, f(2k) = -16 + 10 = -6 = 6*(-1) = 6k

可見對於每一個 k 值的情況, 答案均是 6k。

2014-03-01 21:30:13 補充:
那些年大大的解答很好~

請容許我加入補充之中。

ღ(。◕‿◠。)ღ

2014-03-01 21:32:04 補充:
如果不想列出所有情況再反想答案為 6k,可以用那些年大大的方法。

以上從 k³ - k = 0 這一步可見 k³ = k。

The remainder when f(x) is divided by x - 2k is f(2k).

f(2k) = 2(2k)³ - 9(2k) + 8k
= 2(8k³) - 18k + 8k
= 16k³ - 10k
= 16k - 10k
= 6k
2014-03-02 4:03 am
Using remainder theorem, f(k) = k, therefore,
2k^3 - 9k + 8k = k
==> k^3 = k

When f(x) is divided by (x - 2k), the remainder is :
f(2k)
= 2(2k)^3 - 9(2k) + 8k
= 16k^3 - 18k + 8k
= 16k - 18k + 8k ⋯⋯ (as k^3 = k)
= 6k


收錄日期: 2021-04-13 20:11:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140228000051KK00118

檢視 Wayback Machine 備份