M1求解(log+圖)~~20點

2014-02-26 5:58 am
Two variables xand y are related by the equation y = ka^x ,where a and k are constants.
When x = loga(底)2,y= 8.If log2(底)y is plotted against x, the straight line obtained has slope equal to -1.
a,Find the values of a and k.(anw:a=1/2;k=4)
b,What is the intercept on the vertical axis of the line?(anw:2)

回答 (3)

2014-02-26 6:42 am
✔ 最佳答案
a)
x=log(a)2 , y=8
y = ka^x
8 = k a^[log(a)2]
8 = 2k
k=4

y=4a^x
log y = log 4 + x log a
log(2)y = [log(2)a] x + log(2)4
Slope=log(2)a=-1
log(2)a=-1
log(2)a=log(2)(1/2)
a=1/2

b) x=0
log(2)y = [log(2)a] x + log(2)4
log(2)y = [log(2)a] (0) + 2
log(2)y = 2
∴The intercept is 2

2014-02-26 00:59:24 補充:
謝謝你們 -^.^-
2014-02-26 6:55 am
y = ka^x

log₂y = log₂k + log₂(a^x)
log₂y = log₂k + [log₂(a)]x

log₂y = [log₂(a)]x + log₂k

It is a form of y = mx + C

In a plot of log₂y against x, the slope is log₂(a), it is given slope = -1

==> log₂(a) = -1
==> a = (1/2) since 2^(-1) = 1/2

Given when x=loga2 ; y=8

loga2 = log(1/2)2 = -1 = x

sub into : log₂y = [log₂(a)]x + log₂k
==> log₂8 = (-1)(-1) + log₂k
==> 3 = 1 + log₂k
log₂k = 2
k = 4

intercept is log₂k = 2



2014-02-25 22:57:23 補充:
我也慢了,

明天刪吧!

~~~~~~~~~~~~~
2014-02-26 6:49 am
OK, 我慢了~

我刪帖, 請看以下:

https://s.yimg.com/rk/HA00430218/o/307265068.png

2014-02-26 16:50:35 補充:
HK~ 客氣了~

繼續努力作答,助人助己~

^___^


收錄日期: 2021-04-27 20:36:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140225000051KK00170

檢視 Wayback Machine 備份