linear algebra, matrix

2014-02-23 11:49 pm
[ 1 1 1 1 | 1
2 1 2 0 | 3
1 2 1 3 | a
3 4 3 5 | d ]

Figure out the values for constants a and b such that the system is consistent, and then, find the solutions of the system.

P.S. Are a and b = 0???
更新1:

我let a=2, d=4, 計完好似就係 [ 1 1 1 1 | 1 0 1 0 2 | -1 0 0 0 0 | 2 0 0 0 0 | 2 ] @@錦即係要a and d =0 先 consistent?? 定係我計錯

回答 (2)

2014-02-24 1:24 am
✔ 最佳答案
[ 1 1 1 1 | 1
2 1 2 0 | 3
1 2 1 3 | a
3 4 3 5 | d ]

R2 - 2 x R1 to R2
R3 - R1 to R3
R4 - 3 x R1 to R4 we get

[ 1 1 1 1 | 1
0 -1 0 -2 | 1
0 1 0 2 | a - 1
0 1 0 2 | d - 3 ]

R4 - R3 to R4 and then R2 + R3 to R3

[ 1 1 1 1 | 1
0 -1 0 -2 | 1
0 0 0 0 | a
0 0 0 0 | (d - 3) - (a - 1) ]

For the system to be consistent
a = 0 and
(d - 3) - (a - 1) = 0
so d = a +2 = 2

Solution of the system (x,y,z,w) :
Let w = t
Let z = s
-y + (-2t) = 1
y = - 1 - 2t
x + (-1 - 2t) + s + t = 1
x = t - s + 2.
2014-02-23 11:55 pm
用 Gaussian elimination 計到 (reduced) row echelon form。

如果無人幫你我今晚計畀你睇,而家唔得閒住...

努力!

╭∧---∧╮
│ .✪‿✪ │
╰/) ⋈ (\╯


收錄日期: 2021-04-25 22:39:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140223000051KK00081

檢視 Wayback Machine 備份