Given that there is 3 circle equations
(x-x1)^2 + (y-y1)^2 = r1^2
(x-x2)^2 + (y-y2)^2 = r2^2
(x-x3)^2 + (y-y3)^2 = r3^2
where (x1,y1), (x2,y2), (x3,y3) cannot form a straight line
find a circle which touches all 3 circles above and the area of it is the smallest
Please help me to solve this problem, I have struggled it for a week, thanks.
謝謝你的回應。題目是這樣的 : 現在已有3個這樣的圓形。 圓1: 圓心為(x1,y1), 半徑為r1 圓2: 圓心為(x2,y2), 半徑為r2 圓3: 圓心為(0,0), 半徑為r3 現在我想找一個最小的圓形,它會和以上已知的圓形touching each other。 我想知怎樣用 x1, y1, x2, y2, r1, r2, r3 去表達這個圓形的圓心 (a,b) 感謝你
To HK~ 謝謝你的問題。 因為我想簡化問題複雜程度,所以我當(x3,y3)是(0,0)以便計算。 當然你也可以不用我的assumption,直接用x1, y1, x2, y2, x3, y3, r1, r2, r3 這7個parameter 做。
To LUNG. 謝謝你的回答。不過我代數試過你的公式好像有點問題。 同埋你那三條等式好像少了一些TERMS , EG: a^2, b^2, c^3
To LUNG. thanks. 你的公式是正確的,不過有些CASES 會不通用
the distance between (a,b) and (x1,y1) may not always be R+r1 At some cases, when circle 1 is very large and cover the other two circle, then the distance between (a,b) and (x1,y1) is r1-R