✔ 最佳答案
1.
(i)
T(1) = 3(2)¹ = 6
T(2) = 3(2)² = 12
T(3) = 3(2)³ = 24
T(4) = 3(2)⁴ = 48
T(5) = 3(2)⁵ = 96
(ii)
T(1) = (-1)¹(3)⁰ = -1
T(2) = (-1)²(3)¹ = 3
T(3) = (-1)³(3)² = -9
T(4) = (-1)⁴(3)³ = 27
T(5) = (-1)⁵(3)⁴ = -81
2.
First term, a
common ratio, r = 2
T(5):
ar⁴ = 32
a(2)⁴ = 32
a = 2
First term, T(1) = 2
3.
(i)
T(1) = 3
T(2) = 6 = 3 x 2
T(3) = 12 = 3 x 2^2
T(4) = 24 = 3 x 2^3
T(n) = 3 x 2^(n - 1)
(ii)
T(1) = 0.2
T(2) = 0.6 = 0.2 x 3
T(3) = 1.8 = 0.2 x 3^2
T(4) = 5.4 = 0.2 x 3^3
T(n) = 0.2 x 3^(n - 1)
4.
First term, a = 1
Common ratio = 3/1 = 3
T(n):
a r^(n - 1) = 243
1 x (3)^(n - 1) = (3)^5
n - 1 = 5
n = 6
Number of terms = 6
5.
Let m be the geometric mean.
m/(-24) = (-6)/m
m² = 144
m = 12 or m = -12
The geometric mean is 12 or -12.
6.
T(2) and T(3) are the two geometric means.
First term, a = -0.5
Common ratio, r
T(4) = a r³
(-0.5) r³ = 4
r³ = -8
r = -2
T(2) = (-0.5) x (-2) = 1
T(3) = (-0.5) x (-2)² = -2
The two geometric means are 1 and -2.
7.
(i)
First term, a = 1
Common ratio, r = -2/1 = -2
No. of terms, n = 15
S(15)
= a [1 - r^n] / [1 - r]
= 1 x [1 - (-2)^15] / [1 - (-2)]
= (1 + 32768) / (1 + 2)
= 10923
(ii)
First term, a = 2
Common ratio, r = 6/2 = 3
T(n):
a r^(n - 1) = 4374
2 x (3)^(n - 1) = 4374
3^(n - 1) = 3^7
n - 1 = 7
n = 8
S(8)
= a [r^n - 1] / [r - 1]
= 2 x [3^8 - 1] / [3 - 1]
= 6560
8.
(i)
First term, a
Common ratio, r
T(2):
a r = 2 ...... [1]
T(6):
a r^5 = 1/8 ...... [2]
[2]/[1] :
r^4 = 1/16
r^4 = (1/2)^4
r = 1/2 or r = -1/2
When r = 1/2,[1]:
a (1/2) = 2
a = 4
General term = a r^(n - 1) = 4 x (1/2)^(n - 1)
When r = -1/2, [2]:
a (-1/2) = 2
a = -4
General term = a r^ (n - 1) = -4 x (-1/2)^(n - 1)
(ii)
When a = 4 and r = 1/2, Sum to infinity
= a / [1 - r]
= 4 / [1 - (1/2)]
= 8
When a = -4 and r = -1/2, Sum to infinity
= a / [1 - r]
= 4 / [1 - (-1/2)]
= 8/3