✔ 最佳答案
1.y'=(6xy-y^2)/(3xy-6x^2)Ans:dy/dx=y(6x-y)/3x(y-2x).....1階齊次方程式0=y(6x-y)dx+3x(2x-y)dy.....令y=ux=ux(6x-ux)dx+3x(2x-ux)(udx+xdu).....dy=udx+xdu=u(6x-ux)dx+3(2x-ux)(udx+xdu)=u(6-u)dx+3(2-u)(udx+xdu)=u(6-u)dx+3(2-u)udx+3(2-u)xdu=[u(6-u)+3u(2-u)]dx+3(2-u)xdx=u(6-u+6-3u)dx+3(2-u)xdx=u(12-4u)dx+3(2-u)xdu=dx/x+3(u-2)du/4u(u-3)ln(c1)=∫dx/x+∫du/4(u-3)-∫du/4u=ln(x)+0.25*ln(u-3)-0.25*ln(u)=ln{x*[(u-3)/u]^0.25}c1=x[(u-3)/u]^0.25c1^4=[(u-3)/u]*x^4u=c*(u-3)*x^4.....c=1/c1^4y/x=c*[(y/x)-3)]*x^4y=c*(y-3x)*x^4=c*y*x^4-3c*x^5y(cx^4-1)=3cx^5y(x)=3cx^5/(cx^4-1).....ans
2014-02-13 15:04:34 補充:
(3) 逆運算子部份分式法
yp(x)=(aD+b)/(D^2+9)+c/(D+2)+f/(D-2)
f(D)=1=(D^2-4)(aD+b)+c(D-2)(D^2+9)+f(D+2)(D^2+9)
f(2)=1=f*4*13 => f=1/52
f(-2)=1=-4*52c => c=-1/52
f(0)=1=-4b-2*9c+2*9f => b=-1/13
2014-02-13 15:05:07 補充:
f(1)=1=(a+b)(-3)+c(-1)10+f*3*10 =>
1=-3*(a-1/13)+10/52+30/52
=-3a+3/13+40/52
=-3a+3/13+10/13
=-3a+13/13
=-3a+1 => a=0
yp(x)=-1/13(D+9^2)-1/52(D+2)+1/52(D-2).....Note
2014-02-13 15:06:31 補充:
(3.1) D=2 => y=e^(2x)
y1(x)=[e^(2x)/52]{∫e^(-2x)10*e^(2x)dx+∫3e^(-2x)*cos3x*dx}.....Note1
=[e^(2x)/52]{10x+3[a*cos(bx)+b*sin(bx)]e^(ax)/(a^2+b^2)}.....a=-2,b=3
=[e^(2x)/52]{10x+3[-2cos(3x)+3sin(3x)]e^(-2x)/13}
=(5/26)*x*e^(2x)+(3/676)*[-2cos(3x)+3sin(3x)]
2014-02-13 15:07:05 補充:
Note1: 部份積分法
A=∫e^(ax)*cos(bx)*dx
=∫cos(bx)d(e^ax)/a
a*A=cos(bx)*e^(ax)+b∫e^(ax)*sin(bx)*dx
=cos(bx)*e^(ax)+b∫sin(bx)*d(e^ax)
=cos(bx)*e^(ax)+b[e^ax*sin(bx)-b∫e^ax*cos(bx)dx]/a
2014-02-13 15:07:27 補充:
A*a^2=a*cos(bx)*e^(ax)+b[e^ax*sin(bx)-b*A]
=a*cos(bx)*e^(ax)+b*e^ax*sin(bx)-A*b^2
A(a^2+b^2)=a*cos(bx)*e^(ax)+b*e^ax*sin(bx)
A=[a*cos(bx)+b*sin(bx)]e^(ax)/(a^2+b^2)
2014-02-13 15:07:51 補充:
(3.2) D=-2 => y=e^(-2x)
y2(x)=[-e^(-2x)/52]{∫e^(2x)10*e^(2x)dx+∫3e^(2x)*cos3x*dx}
=[-e^(-2x)/52]{10∫e^(4x)dx+3∫e^(2x)*cos3x*dx}.....a=2,b=3
=[-e^(-2x)/52]{(5/2)*e^(4x)+(3/13)*(2cos3x+3sin3x)e^(2x)}
=-(1/52)*{(5/2)*e^(2x)+(3/13)*(2cos3x+3sin3x)}
=-{(5/104)*e^(2x)+(3/676)*(2cos3x+3sin3x)}
2014-02-13 15:51:08 補充:
有事出去
2014-02-13 18:58:07 補充:
超過字限
請轉意見欄
2014-02-13 18:58:20 補充:
(3.4) D=-3j => y=e^(-3jx)
y3(x)=[-e^(3jx)/13]{∫e^(-3jx)10*e^(2x)dx+∫3e^(-3jx)*cos3x*dx}
=[-e^(-3jx)/13]{10*e^(2-3j)x/(2-3j)-e^(-3jx)*(sin3x-cos3x)/2}
=-10e^(2-3j)/13(2-3j)+(sin3x-jcos3x)/26
2014-02-13 18:59:10 補充:
(3.3) D=+3j => y=e^(3jx)
y3(x)=[-e^(-3jx)/13]{∫e^(3jx)10*e^(2x)dx+∫3e^(3jx)*cos3x*dx}
=[-e^(-3jx)/13]{10*e^(2+3j)x/(2+3j)+e^(3jx)*(sin3x-jcos3x)/2}.....Note2
=-10e^(2+3j)/13(2+3j)-(sin3x-jcos3x)/26
2014-02-13 19:10:59 補充:
Note2: 虛函數部份積分
B=∫e^(ajx)cos(ax)dx
=∫e^(ajx)d(sin(ax))/a
aB=sin(ax)e^(ajx)-aj∫sin(ax)e^(ajx)dx
=e(ajx)sin(ax)-j∫e^(ajx)d(cos(ax))
=e(ajx)sin(ax)-j[e^(ajx)cos(ax)-aj∫cos(ax)e^(ajx)dx]
=e(ajx)sin(ax)-je^(ajx)cos(ax)+aj^2*B
2aB=e(ajx)[sin(ax)-jcos(ax)]
B=e(ajx)[sin(ax)-jcos(ax)]/2a
2014-02-13 19:12:04 補充:
(3.5) 兩者合併
y5=y3+y4
=-10e^(2+3j)/13(2+3j)-(sin3x-jcos3x)/26
-10e^(2-3j)/13(2-3j)+(sin3x-jcos3x)/26
=-10e^(2+3j)/13(2+3j)-e^(2-3j)/13(2-3j)
=-10[(2-3j)e^(2+3j)+(2+3j)e^(2-3j)]/169
=-10e^2[(2-3j)e^3j+(2+3j)e^(-3j)]/169
=-10e^2{(2-3j)(cos3x+jsin3x)+(2+3j)(cos3x-jsin3x)}
2014-02-13 19:12:26 補充:
=-10e^2{2*cos3x-6j^2*sin3x}
=-20e^2*(cos3x+2sin3x)
2014-02-13 19:16:42 補充:
(3.6) 特殊解
yp(x)=y1+y2+y5
=(5/26)*x*e^(2x)+(3/676)*[-2cos(3x)+3sin(3x)]+
-(1/52)*{(5/2)*e^(2x)+(3/13)*(2cos3x+3sin3x)}+
-20e^2*(cos3x+2sin3x)+
2014-02-13 19:17:22 補充:
(3.7) 通解
y(x)=yh(x)+yp(x)
=請自己代入