✔ 最佳答案
1.聯立微分方程式(x1)' = 4(x1) - 2(x2) + e^t(x2)' = -2(x1) + (x2)Ans: (1) 簡化運算: x=x1, y=x2{x}'.[.4 -2].{x}.{e^t}
{y} =[-2 .1]*{y}+{0..}令X={x}
....{y}A=[.4 -2]
..[-2 .1]B={e^t}
..{0..}=> X'-A*X=B|A|=4-4=0 => 不能使用矩陣法
(2) 改用微分法: 再微分一次x'=4x-2y+e^t.....(a)y'=-2x+y.....(b)(a)' & (b)':x"=4x'-2y'+e^ty"=-2x'+y'=-2(4x-2y+e^t)+(-2x+y)=-8x+4y-2e^t-2x+y=-10x+5y-2e^t=5(-2x+y)-2e^t=5*y'-2e^t=> y"-5y'=-2e^t特徵方程式:0=m^2-5m=m(m-5)m=0,5齊次解為: yh=a+b*e^5ta,b=常數
(3) 求特殊解yp=yp'=yp"=c*e^typ"+yp'=2c*e^t=-2*e^t => c=-1=> yp=-e^t
(4) 求通解y(t)=yh+yp=a+b*e^5t-e^t.....(c)=ans
(5) 求另外一變數(c),(a):x'=4x-2y+e^t=4x-2(a+b*e^5t-e^t)+e^t=4x-2a-2b*e^5t+3e^t=> x'-4x=-2a-2b*e^5t+3e^t特徵方程式:0=m-4 => m=4齊次解為: xh=f*e^4t(6) 求特殊解xp=g*e^5t+h*e^t+kxp'=5g*e^5t+h*e^txp'-4xp=5g*e^5t+h*e^t-4(g*e^5t+h*e^t+k)=g*e^5t-3h*e^t-4k=-2a-2b*e^5t+3e^t=> g=-2b, h=-1, k=1/2=> xp=-2b*e^5t-h*e^t+1/2
(7) 求通解x(t)=xh+xp=f*e^4t-2b*e^5t-h*e^t+1/2.....ans
2.摺積定理: 請問sint*sint 如何用摺積公式求解出...就是積分公式那個,看得懂,但是不會用呀....Ans: 褶積分定理(Convolution Theory) => A=L[f(t)*g(t)]=L{∫<0~t>g(R)*f(t-R)dR}=L{∫sinR*sin(t-R)dR}=L{∫sinR*(sinR*cost-sint*cosR)dR}=L{∫sin^2R*cost*dR-∫sint*cosR*sinR*dR}=L{∫cost*(1-cos2R)dR/2-∫sint*sinR*d(sinR)}=L{∫cost*dR/2-∫cost*cos2R*dR/2-sint*sin^2R/2}=L{R*cost/2-cost*cos2R/4-sint*sin^2R/2}.....R=0~t=L{(t/2)*cost-cost(cos2t-1)/4-(sint*sin2t)/2}=L{0.5*t*cost-0.25*cost*cos2t+0.25cost-0.5*sint*sin2t}=L{0.5*t*cost-0.25*cost*cos2t+0.25cost-sint*sint*cost}=L{cost*[0.5t-0.25cos2t+0.25-sint*sint]} =G(s)*H(s)=L(cost)*L[0.5t-0.25cos2t+0.25-sint*sint]=> G(s)=L(cost)=1/(s^2+1)=> H(s)=L[0.5t-0.25cos2t+0.25-sint*sint]=L(0.5t-0.25cos2t+0.25)-L(sint*sint)=1/2s^2-2/4(s^2+4)+1/4s-A=> A=G(s)*H(s)=[1/(s^2+1)]*[1/2s^2-1/2(s^2+4)+1/4s-A]=[1/(s^2+1)]*[1/2s^2-1/2(s^2+4)+1/4s]-A/(s^2+1)=> A[1+1/(s^2+1)]=[1/(s^2+1)]*[1/2s^2-1/2(s^2+4)+1/4s]A=[1/(s^2+1)]*[1/2s^2-1/2(s^2+4)+1/4s]*(s^2+1)/(s^2+2)=[1/2s^2-1/2(s^2+4)+1/4s]/(s^2+2).....ans