Limit

2014-02-06 12:43 am
Evaluate lim x->0 [1/x - 1/(e^x-1)] without using L'Hopital's rule.

回答 (3)

2014-02-06 12:55 am
✔ 最佳答案
1/x - 1/(e^x - 1)
= [(e^x - 1) - x]/[x(e^x - 1)]
= (e^x - 1 - x)/[x (e^x - 1)]
= (1 + x + x^2/2! + x^3/3! + ..... - 1 - x)/[x(e^x - 1)]
= (x^2/2! + x^3/3! + .....)/[x(e^x - 1]
= (x/2! + x^2/3! + x^3/4! + ......)/(x + x^2/2! + x^3/3! + .....)
= [x(1/2! + x/3! + x^2/4! + .....)/[x(1 + x/2! + x^2/3! + ....]
= (1/2! + x/3! + x^2/4! + .....)/(1 + x/2! + x^2/3! + ....)
So when x tends to 0, the expression tends to (1/2!)/(1) = 1/2.
2014-02-06 3:04 am
infinite series is a gd try, but 因為有1/(e^x - 1),所以諗緊可唔可以用例如lim x->0 (e^x-1)/x = 1 ge 公式
2014-02-06 12:54 am
How about using infinite series?

e^x = 1 + x + x²/2 + x³/3! + ...

Your answer should be 1/2.


收錄日期: 2021-04-13 19:58:03
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140205000051KK00153

檢視 Wayback Machine 備份