數字系統題目求解

2014-02-04 1:34 am
1. (85)10 = ( )2
2. (33.25)10 = ( )2
3. (43.625)10 = ( )2
4. (13)10 = ( )8
5. (29)10 = ( )8
6. (83)10 = ( )8
7. (16)10 = ( )16
8. (48)10 = ( )16
9. (107)10 = ( )16
10. (1011.011)2 = ( )10
11. (53)8 = ( )10
12. (3A)16 = ( )10
13. (11011)2 + (10011)2 = ( )2
14. (10010)2 - (1101)2 = ( )2
15. (1010)2 x (1001)2 = ( )2
16. (11001)2 除以 (101)2 = ( )2
17. (01001010)2 = ( )求2的補數
18. (11010001)2 = ( )求2的補數

回答 (6)

2014-02-04 2:28 am
✔ 最佳答案
1. (85)10 = (1010101)2
2. (33.25)10 = (100001.01)2
3. (43.625)10 = (101011.101)2
4. (13)10 = (15)8
5. (29)10 = (35)8
6. (83)10 = (123)8
7. (16)10 = (10)16
8. (48)10 = (30)16
9. (107)10 = (6B)16
10. (1011.011)2 = (11.375)10
11. (53)8 = (43)10
12. (3A)16 = (58)10
13. (11011)2 + (10011)2 = (101110)2
14. (10010)2 - (1101)2 = (101)2
15. (1010)2 x (1001)2 = (1011010)2
16. (11001)2 除以 (101)2 = (101)2
17. (01001010)2 = (10110110)求2的補數
18. (11010001)2 = (00101111)求2的補數

2014-02-03 21:30:05 補充:
2的補數為1的補數+1=0與1互換後+1

2014-02-03 23:07:34 補充:
Mr. Kwok沒錯!!!1's compliment即為1的補數,2's compliment 為2的補數!!!
2014-03-02 8:20 am
到下面的網址看看吧

▶▶http://misshare168.pixnet.net/blog/post/86950298
2014-02-04 8:19 am
電腦都有計算機功能,撥一撥就知道了。
要用工程型
2014-02-04 7:04 am
對不起,我對第 17 和 18 兩題有意見,

例如 17

01001010 轉為 10110101 是 1's compliment ,但我不肯定譯名是不是 1的補數。

如果 2的補數 相當於 2's compliment 的話,答案應該是 1's compliment + 1,即

10110101 + 1 = 10110110

2014-02-03 23:06:59 補充:
即是我認同「巨人」的做法。
2014-02-04 2:35 am
1.(85)10 = (1010101)22|85
----
2|42....餘1
----
2|21....餘0
----
2|10....餘1
----
2|5.....餘0
---
2|2.....餘1
---
..1.....餘0
2. (33.25)10 = (100001.01)22|33
----
2|16....餘1
----
2|8.....餘0
---
2|4.....餘0
---
2|2.....餘0
---
2|1.....餘00.25=0*(1/2)+1/4=1*2^(-1)=0.01(2進位)
3. (43.625)10 = (101011.101)22|43----
2|21....餘1
----
2|10....餘1
----
2|5 ....餘0
----
2|2 ....餘1
---
2|1 ....餘00.625=5/8=4/8+1/8=1/2+0*1/4+1/8=0.101
4. (13)10 = (15)88|13
----
..1....餘5

5. (29)10 = (35 )88|29
----
..3....餘5
以此類推
6. (83)10 = (123 )88|83
----
8|10.....餘3
----
8|1 .....餘2

7. (16)10 = (10 )1616|16
-----
...1.....餘0

8. (48)10 = (30 )1616|48
-----
...3 .....餘0
9. (107)10 = (75 )1616|107
------
...7.....餘5

10. (1011.011)2 = (11.375 )101*2^3+0*2^2+1*2^1+1*2^0+0*1/2+1/4+1/8=8+2+1+1/4+1/8=11+0.25+0.125=11.375
11. (53)8 = (43 )105*8+3=43
12. (3A)16 = (58 )103*16+A=48+10=58
13. (11011)2 + (10011)2 = (101110 )2直式法 11011
+10011
-------
101110
14. (10010)2 - (1101)2 = (101 )2橫式法(2^4+2)-(2^3+2^2+1)=2*(2^3)+2-2^3-2^2-1=1*(2^3)+1-(2^2)=2*(2^2)+1-(2^2)=1*(2^2)+1*(2^0)=101

2014-02-03 18:41:39 補充:
16. (11001)2 除以 (101)2 = (101 )2

=(16+8+1)/(4+1)

=25/5

=5

=101(2)



17. (01001010)2 = (10110101 )求2的補數

1與0互相交換


18. (11010001)2 = (00101110 )求2的補數

2014-02-03 18:44:22 補充:
15. (1010)2 x (1001)2 = (111010 )2

=(8+2)*(8+1)

=10*9

=90

=101010


收錄日期: 2021-04-27 20:41:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140203000010KK03141

檢視 Wayback Machine 備份