可能解釋方面需要作出些少調整。
例如: T(n) = -n
T(n+1) - T(n) = -1 < 0
but T(n) does not converge.
2014-01-27 12:04:04 補充:
How about using the ratio test?
http://en.wikipedia.org/wiki/Ratio_test
T(n) = 1/(2^n - n)
T(n+1)/T(n) = (2^n - n)/[2^(n+1) -n-1] = (1 - n/2^n)/[2 - (n+1)/2^n] → 1/2 as n→∞
Therefore, 1/(2^n - n) is a convergent series.
2014-01-27 12:33:17 補充:
Chun Yin (。◕‿◕。)
n/2^n → 0 as n→∞
Consider a real function f(x) = x/2^x.
lim(x→∞) x/2^x = lim(x→∞) 1/[2^x ln2] = 0 by L'Hopital rule.
Therefore, the limit of sequence n/2^n → 0 as n→∞.
2014-01-27 12:35:04 補充:
阿年 ღ(。◕‿◠。)ღ
Consider T(n) = 1/n > 0 for all n.
T(n+1) - T(n) = 1/(n+1) - 1/n = -1/[n(n+1)] < 0
However, 1/1 + 1/2 + 1/3 + 1/4 + ... does not converge.
2014-01-27 15:15:08 補充:
不如等多D意見先~
我唔係太熟 calculus...