高職極限問題lim

2014-01-28 1:08 am
lim(n→1)[a(√x+1)-b]/(x-1)=1 b=?(A)1(b)2(c)3(d)4

回答 (3)

2014-01-28 2:35 am
✔ 最佳答案
首先,你符號好像打錯了,不是n→1,應該是x→1吧?

lim(x→1)[a(√x+1)-b]/(x-1)=1 b=?(A)1(b)2(c)3(d)4

[Sol]
若將x=1代入原式,分母為0,因此若極限存在,分子也必須為0
即 a(√1+1) -b = 0
2a -b = 0 → b=2a
代入原式
lim(x→1) [a(√x+1) -2a]/(x-1) = 1
lim(x→1) (a√x +a -2a)/(x-1) = 1
lim(x→1) (a√x -a)/(x-1) = 1
lim(x→1) a(√x -1)/(x-1) = 1
分子分母同乘以 √x +1 得
lim(x→1) [a(√x -1)(√x +1)]/[(x-1)(√x +1)] = 1
lim(x→1) [a(x -1)]/[(x-1)(√x +1)] = 1
消去(x-1)
lim(x→1) a/(√x +1) = 1
x=1代入
a/2 = 1
a = 2
因為 b = 2a
所以 b = 4,故選(d)

^_____^
2014-01-28 3:15 am
1 lim(x->1)_[a√(x+1)-b]/(x-1)=1,b=?(A)1(b)2(c)3(d)4
Sol
Set f(x)=a√(x+1)-b
f’(x)=a(x+1)^(-1/2)
lim(x->1)_[a√(x+1)-b]/(x-1)=1
f(1)=0
a√(1+1)-b=0
b=a√2
lim(x->1)_f’(x)/1=1
f’(1)=1
a*2^(-1/2)=1
a=2^(1/2)=√2
b=2
2014-01-28 2:27 am
你的題目似乎有打錯喔~~
極限n趨近於1,但多項式中沒有n喔?


收錄日期: 2021-05-02 10:42:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140127000016KK02618

檢視 Wayback Machine 備份