Higher level maths

2014-01-21 6:26 am
Show that 1/100+1/101+1/102+......+1/10000 >1

回答 (2)

2014-01-21 9:42 am
✔ 最佳答案
Consider: (1/101) + (1/102) + (1/103) + ...... + (1/10000)
Number of terms = 10000 - 101 + 1 = 9900
Each term ≥ (1/10000)

Hence, (1/101) + (1/102) + (1/103) + ...... + (1/10000) > [9900 x (1/10000)]
(1/101) + (1/102) + (1/103) + ...... + (1/10000) > (9900/10000)


(1/100) + (1/101) + (1/102) + (1/103) + ...... + (1/10000)
> (1/100) + (9900/10000)

But
= (1/100) + (9900/10000)
= (100/10000) + (9900/10000)
= 1

Hence,
(1/100) + (1/101) + (1/102) + (1/103) + ...... + (1/10000) > 1
參考: micatkie
2014-01-21 8:09 am
∫[100 to 10000] (1/x) dx

= ln|x| [100 to 10000]

= ln(10000) - ln(100)

= 4.605 >1

2014-01-21 00:30:36 補充:
電腦程式計算的結果是 = 4.61022851840477

Private Sub Command1_Click()
valsum = 0
For cnt = 100 To 10000
valsum = valsum + (1 / cnt)
Next cnt
Text1.Text = valsum
End Sub


收錄日期: 2021-04-13 19:55:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140120000051KK00254

檢視 Wayback Machine 備份