✔ 最佳答案
第7題是偏微分的應用
第8題是求質心的專章,應屬於重積分的範圍
7.
令F(x,y,z)=x^2-4y^2+z^2-16=0
▽F(2,1,4)=(2x,-8y,2z)│(2,1,4)=(4,-8,8)→取(1,-2,2)為曲面在(2,1,4)之法向量
令切平面上任一點(x,y,z),則((x-2),(y-1),(z-4))和法向量垂直
((x-2),(y-1),(z-4))●(1,-2,2)=0
(x-2)-2(y-1)+2(z-4)=0
得切平面 x-2y+2z-8=0
8.
density function:ρ(x,y)=y, 以下∫(a,b)表積分下限a上限b
m=∫∫ρ(x,y) dA
=∫(0,π/4)∫(sin x, cos x) y dy dx (以下的上下限省略)
=∫(1/2)y^2│(sin x, cos x) dx
=(1/2)∫(cos^2 x - sin^2 x) dx
=(1/2)∫cos 2x dx
=(1/4)∫cos 2x d2x
=(1/4)sin 2x│(0,π/4)
=(1/4)[sin (π/2) - sin 0]
=1/4
My=∫∫ xy dy dx
=∫(1/2)xy^2│(sin x, cos x) dx
=(1/2)∫ x(cos^2 x - sin^2 x) dx
=(1/2)∫ x cos 2x dx
u=x, dv=cos 2x dx, du=dx, v=(1/2)sin 2x
=(1/2)[(1/2)x sin 2x - (1/2)∫ sin 2x dx]
=(1/4)[x sin 2x - ∫ sin 2x dx]
=(1/4)[x sin 2x + (1/2)cos 2x]
=(1/4)x sin 2x + (1/8)cos 2x│(0,π/4)
=[(1/4)(π/4)sin π/2 +(1/8)cos π/2] - [0+(1/8)cos 0]
=π/16 - 1/8
Mx=∫∫ y*y dy dx
=∫ (y^3)/3│(sin x, cos x) dx
=(1/3)∫ (cos^3 x- sin^3 x) dx
=(1/3)[∫ cos^3 x dx - ∫ sin^3 x dx
=(1/3)[∫ cos^2 x(cos x dx) - ∫ sin^2 x(sin x dx)]
=(1/3)[∫ (1- sin^2 x) d sin x - ∫ (1 - cos^2 x) d cos x]
=(1/3)[sin x - (sin^3 x)/3 + cos x - (cos^3 x)/3]│(0,π/4)
=(1/3)[sin π/4 - (sin^3 π/4)/3 + cos π/4 - (cos^3 π/4)/3]
- (1/3)[sin 0 - (sin^3 0)/3 + cos 0 - (cos^3 0)/3]
=(1/3)(√2 - √2/6] - (1/3)(2/3)
=(5√2 - 4)/18
x-bar = My/m = (π/16 - 1/8)/(1/4) = π/4 - 1/2
y-bar = Mx/m = [(5√2 - 4)/18]/(1/4) = (10√2 - 8)/9