國二數學-配方法與公式解
1.若一元二次方程式2(x-7)²+4=0 則x=?
2.方程式(3x)²+4x+1=0 X=?
3.用配方法解5x²+8x+m=0可得x+5分之4=正負5分之根號31 則m=?
4.方程式x²+(m²-5)x-6=0的兩個解為相反數則m=?
5.4(x+5²)=7 x=?
回答 (3)
✔ 最佳答案
2121212135
2014-01-01 23:03:33 補充:
https://www.flickr.com/photos/113125345@N06/11687256873/
2014-01-01 23:12:42 補充:
第四題答案被切到,m就是被切到左邊的那個m值:正負根號五
2014-01-02 13:21:57 補充:
第三提正負號搞錯@@
b^2-4ac=(4)^2-4*(5/2)*c=31
c=-(3/2)
最後結果為m=-3
2014-01-16 22:02:22 補充:
好吧,我承認是為了要2500點以上的特殊功能,所以這麼做,既然造成反感,以後不會這樣了,我會公平競爭
與、華、滑、蕭、法、良、語、賓、通、得、12345,同屬一人。
而前四者,乃今日加入,今日投票。分身投票之狼之狠,莫甚於此者。
待投票過後,當廣邀朋友參觀,學習何謂「分身投票」也!
1.
2(x - 7)² + 4 = 0
(x - 7)² + 2 = 0
(x - 7)² = 2
x - 7 = ±(√2)i .. where i = √-1
x = 7 + (√2)i 或 x = 7 + (√2)i
2.
(3x)² + 4x + 1 = 0
(3x)² + 2(3x)(2/3) + 1 = 0
[(3x)² + 2(3x)(2/3) + (2/3)²] - (2/3)² + 1 = 0
[3x + (2/3)]² = -5/9
3x + (2/3) = ±(√5)i/3
3x = [-2 ± (√5)i]/3
x = [-2 + (√5)i]/9 或 x = [-2 + (√5)i]/9
3.
5x² + 8x + m = 0
5[x² + (8/5)x] + m = 0
5[x² + (8/5)x + (4/5)²] - 5(4/5)² + m = 0
5[x + (4/5)]² = (16 - 5m)/5
[x + (4/5)]² = (16 - 5m)/25
x + (4/5) = ±[√(16 - 5m)]/5 ...... [1]
已知:x + (4/5) = ±(√31)/5 ......[2]
[1] = [2] :
[√(16 - 5m)]/5 = (√31)/5
16 - 5m = 31
5m = -15
m = -3
4.
設x² + (m² - 5)x - 6 = 0 的兩根為 u 及 -u。
x = u 或 x = -u
(x - u) = 0 或 (x + u) = 0
(x - u)(x + u) = 0
x² - u² = 0
比較兩方程的 x 項:
m² - 5 = 0
m² = 5
m = √5 或 m = -√5
另解:
設x² + (m² - 5)x - 6 = 0 的兩根為 u 及 -u。
兩根之和:
-(m² - 5) = u + (-u)
m² - 5 = 0
m² = 5
m = √5 或 m = -√5
5.
4(x + 5²) = 7
4(x + 25) = 7
x + 25 = 7/4
x + (100/4) = 7/4
x = -93/4
若題目為 4(x + 5)² = 7 之誤,則:
4(x + 5)² = 7
(x + 5)² = 7/4
x + 5 = ±(√7)/2
x + (10/2) = ±(√7)/2
x = (-10 + √7)/2 或x = (-10 - √7)/2
參考: 賣女孩的火柴
收錄日期: 2021-04-13 19:53:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20140101000016KK03845
檢視 Wayback Machine 備份