有關指數、對數的題目有幾題不會,拜託各位大大幫幫我,謝謝

2013-12-28 4:52 am
註: _ 是指底數的意思,例如像第一題的底數是x-2 真數是(5-x)



1. 若對數log_x-2(5-x)有意義,試問實數x的範圍為何?

2. 試求下列各式的值:(1) log_0.001[10] (2) 7^log_7[5]

3. 已知a大於0且a不等於1,且log_a(2) + log_a(3) = 5 ,試求a的值。

4. 試求27^log_3(7) + log^[1/log_5(7)]之值。

5. 試求滿足下列方程式x的值:(1) (√3)^x+2 = 1/3

6. 若4^x - 5•2^x - 24=0,試求x的值。

7. 試求4^x - 5•2^x - 24大於0的解。

回答 (2)

2013-12-28 8:29 am
✔ 最佳答案
1.
log(x-2) (5-x) 有意義。
(x - 2) > 0 及 (5 - x) > 0
x > 2 及 x < 5
x 的範圍: 2 < x < 5


2.
(1)
log0.001 10
= log10 10 / log10 0.001
= 1 / log10 10^(-3)
= 1 / (-3 log10 10)
= -1/3

(2)
根據定義:
若 a = b^N,則 N = logb a

設 u = 7^log7 5
則 log75 = log7u
u = 5
所以 7^log7 5 = 5


3.
loga 2 + loga 3 = 5
(log10 2 / log10 a) + (log10 3 / log­10a) = 5
(log10 2 + log10 3) / log10 a = 5
log10 6 = 5 log10 a
log10 6 = log10 a^5
a^5 = 6
a = 6^(1/5)


4.
請檢查題目,log^[1/log_5(7)] 沒義意。


5.(1)
(√3)^(x+2) = 1/3
[3^(1/2)]^(x+2) = 1/3
3^[(x+2)/2] = 3^(-1)
(x+2)/2 = -1
x + 2 = -2
x = -4


6.
設 u = 2^x

4^x - 5•2^x - 24 = 0
(2^2)^x - 5•2^x - 24 = 0
(2^x)^2 - 5•2^x - 24 = 0
u^2 - 5u - 24 = 0
(u - 8)(u + 3) = 0
u = 8 或 u = -3
2^x = 8 或 2^x = -3 (不合)
2^x = 2^3
x = 3


7.
設 u = 2^x

4^x - 5•2^x - 24 > 0
(2^2)^x - 5•2^x - 24 > 0
(2^x)^2 - 5•2^x - 24 > 0
u^2 - 5u - 24 > 0
(u + 3)(u - 8) > 0
u < -3 或 u > 8
2^x < -3 (不合) 或 2^x > 8
2^x > 2^3
x > 3

2013-12-28 23:53:29 補充:
4.
題目是 7^log_3(7) + 7^[1/log_5(7)] 嗎?

設 u = 7^log_3(7) 及 v = 7^[1/log_5(7)]
log_u(7) = log_3(7) 及 log_v(7) = log_5(7)
u = 3 及 v = 5

7^log_3(7) + 7^[1/log_5(7)]
= u + v
= 3 + 5
= 8 ...... (答案)
參考: fooks, fooks
2013-12-28 6:01 am
第4題 第二個log 底數多少?
第5題是^(x+2)吧?


收錄日期: 2021-04-13 19:52:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131227000016KK03920

檢視 Wayback Machine 備份