✔ 最佳答案
有3個向量長度都是1,兩兩夾角為P,Q,R,則此3向量所成平行六面體體積=?Ans:O=3者交點P=∠AOB, Q=∠BOC, R=∠COAA=iB=cos(a)i+cos(a)jC=x*i+y*j+z*kx^2+y^2+z^2=1.....(1)-----------------.=dotA.C=x=cosR.....(2)B.C=x*cosP+y*sinP=cosQ.....(3)(2).(3): y=[cosQ-cosR*cosP]/sinP.....(4)(1).(2).(4):z^2=(1-x^2)-y^2=(1-cos^2R)-(cosQ-cosR*cosP)^2/sin^2P={(sinRsinP)^2-(cosRcosP)^2-cos^2Q+2cosPcosQcosR}/sin^2Pz=√{(sinRsinP)^2-(cosRcosP)^2-cos^2Q+2cosPcosQcosR}/sinP---------------------------------------------------------A x B=|0 ...0 cosR ...0|
.|sinP 0 cosP sinP|=(0,0,cosRsinP)=cosRsinP*kV=Volume=C.(A x B)=(xi+yj+zk).cosRsinP*k=z*cosRsinP=√{(sinRsinP)^2-(cosRcosP)^2-cos^2Q+2cosPcosQcosR}cosR.....ans