Maths Problem

2013-12-21 8:03 pm
1)Find the value of x if tan(90-x)sinx+cosx=√2

2)Prove that [tanx+sinx)^2-(tanx-sinx)^2]^2=16(tanx+sinx)(tanx-sinx)

3)In triangleABC, AB=CB and angleABC =90degree . D and E are points on BC and AC respectively such that DE is perpendicular AC . It is given that angleADE=60 degree and DE=2cm.
(a)Find DC
(b)Show that AC =(2+2√3)
(c)Using the result of (b), find AB
(d)Using the result of (c),or otherwise , show that sin75=(1+√3)/(2√2)
NEED STEP,PLZ!!!

回答 (1)

2013-12-22 12:12 am
✔ 最佳答案
tan(90-x)sinx+cosx=√2

[sin(90-x)/cos(90-x)]sinx + cosx = √2

[cosx/sinx]sinx + cosx = √2

cosx + cosx = √2

cosx = 1/√2

x = 45⁰

2013-12-21 15:21:10 補充:
[(tanx+sinx)^2-(tanx-sinx)^2]^2=16(tanx+sinx)(tanx-sinx)

L.H.S. = [(tanx+sinx)^2-(tanx-sinx)^2]^2

Using a² - b² = (a+b)(a-b)

[(tanx+sinx)²-(tanx-sinx)²]² = {[(tanx+sinx)+(tanx-sinx)][(tanx+sinx)-(tanx-sinx)]}²

={[2tanx][2sinx]}²

=16tan²xsin²x

2013-12-21 15:26:59 補充:
R.H.S. = 16(tanx+sinx)(tanx-sinx)

=16(sinx/cosx+sinx)(sinx/cosx-sinx)

=16[(sinx+sinxcosx)/cosx][sinx-sinxcosx)/cosx]

=16sinx[(1+cosx)/cosx]sinx[(1-cosx)/cosx]

=16(sin²x/cos²x)(1+cosx)(1-cosx)

=16tan²x(1-cos²x)

=16tan²xsin²x

=L.H.S.

2013-12-21 16:12:15 補充:
3.a)
2/DC = sin45⁰ = 1/√2
DC = 2√2

b)
AC = AE + EC
AE/DE = tan60⁰ = √3
AE = (√3)(DE) = 2√3

EC/DE = tan45⁰ = 1
EC = DE = 2

AC = AE + EC = 2√3 + 2

c)
AB/AC = cos45⁰ = 1/√2
AB = (1/√2)(AC)
=(1/√2)(2√3 + 2)
=(√2)(√3 + 1)

d)


2013-12-21 16:19:07 補充:
Before anything, since AB = BC and angle ABC = 90⁰, angle ACB = angle BAC = 45⁰.

2013-12-21 16:26:36 補充:
d)

Draw a line from A to somewhere F and such that AF // BC
Draw a line from D to meet AF at G such that DG // BA

angle GAD = 75⁰
DG = AB = (√2)(√3 + 1)

2/AD = cos60⁰ = 1/2
AD = 4

sin75⁰ = DG/AD = [(√2)(√3 + 1)]/4

= (1+√3)/(2√2)


收錄日期: 2021-04-27 20:36:21
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131221000051KK00052

檢視 Wayback Machine 備份