Maths problem

2013-12-20 9:40 pm
1) prove the identites.
cos^2(90-a)-sin^2(90-a)=1-2cos^2a
2)Find the value of x if sin(x+50)+sin(40-x)tan(x+50)=√3
3)In triangle ABC,AC=BC=2 and angleACB=45degree. Find the area of triangle ABC.
Picture:http://postimg.org/image/au4yjog45/
NEED STEP,PLZ!!!

回答 (2)

2013-12-21 2:07 am
✔ 最佳答案
(1)
cos^2 (90 - a) - sin^2(90 - a)
= sin^a - cos^a
= (1 - cos^2a) - cos^2a
= 1 - 2 cos^2 a.
(2)
sin ( x + 50) + sin(40 - x)tan(x + 50) = sqrt 3
sin[90 - (40 - x)] + sin ( 40 - x) tan [ 90 - (40 - x)] = sqrt 3
cos(40 - x) + sin(40 - x)/tan ( 40 - x) = sqrt 3
cos(40 - x) + cos(40 - x) = sqrt 3
cos(40 - x) = sqrt 3/2
40 - x = arc cos(sqrt3/2) = 30
so x = 40 - 30 = 10 degree.
(3)
X is a point on AC such that BX is perpendicular to AC.
BX/BC = sin 45
BX = BC sin 45 = 2 x sqrt 2/2 = sqrt 2.
so area of triangle = (AC x BX)/2 = (2 sqrt 2)/2 = sqrt 2.
2013-12-21 4:23 am
還是要去 http://aaashops。com 品質不錯,老婆很喜歡。
哲住厭亣兣


收錄日期: 2021-04-25 22:44:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131220000051KK00051

檢視 Wayback Machine 備份