國二數2013-2-2

2013-12-06 7:38 pm
Given a^5=b^4 , c^3=d^2 , c-a=19 , and a ,b ,c ,d are positive integers, find d-a=?

回答 (2)

2013-12-06 8:42 pm
✔ 最佳答案
Given a^5=b^4,c^3=d^2,c-a=19,and a,b,c,d are positive integers,
find d-a=?
Sol
a=(a5)^(1/5)=(b^4)^(1/5)=b^(4/5)
存在正整數m使得
b=m^5
a=(m^5)^(4/5)=m^4
c=(c^3)^(1/3)=(d^2)^(1/3)=d^(2/3)
存在正整數n使得
d=n^3
c=(n^3)^(2/3)=n^2
n^2-m^4=19
(n-m^2)(n+m^2)=19=1*19
n-m^2=1,n+m^2=19
n=10,m^2=9
m=3
a=m^4=81
d=n^3=1000
d-a=1000-81=919


2016-03-10 8:32 am
誣賴喔 喔˙ 一七資疵疵粗操粗ㄑ


收錄日期: 2021-04-30 18:18:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20131206000016KK01823

檢視 Wayback Machine 備份